diff --git a/docs/examples/bath-observables/index.html b/docs/examples/bath-observables/index.html index 72e2ccd..a47b514 100644 --- a/docs/examples/bath-observables/index.html +++ b/docs/examples/bath-observables/index.html @@ -51,10 +51,49 @@ correlations_cdag = [ cdagcdag_average[i, j, t] - cdag_average[i, 1, t] .* cdag_average[j, 1, t] for i in 1:size(cdagcdag_average, 1), j in 1:size(cdagcdag_average, 2), t in 1:size(cdagcdag_average,3) -]
It is possible to invert the thermofield transformation (details in [riva_thermal_2023]). The expression of the mean value of the number operator for the physical modes can be expressed as a function of mean values in the extended bath, which we denote $\langle \hat a_{2k}^\dagger \hat a_{2k} \rangle$:
$\langle \hat b_k^\dagger \hat b_k \rangle = \cosh{\theta_k}\sinh{\theta_k} (\langle \hat a_{2k}\hat a_{1k}\rangle + \langle \hat a_{1k}^\dagger\hat a_{2k}^\dagger\rangle ) + \sinh^2{\theta_k} (1+ \langle \hat a_{2k}^\dagger \hat a_{2k} \rangle ) ++ \cosh^2{\theta_k} \langle \hat a_{1k}^\dagger \hat a_{1k} \rangle
$We remark that in the thermofield case, a negative frequency $\omega_{2k}$ is associated to each positive frequency $\omega_{1k}$. The sampling is therefore symmetric around zero. This marks a difference with T-TEDOPA, where the sampling of frequencies was obtained through the thermalized measure $d\mu(\beta) = \sqrt{J(\omega, \beta)}d\omega$, and was not symmetric. To recover the results for the physical bath of frequencies starting from the results of our simulations, that were conducted using the T-TEDOPA chain mapping, we need to do an extrapolation for all of the mean values appearing in Eq. \ref{eq:physicaloccupations}, in order to have their values for each $\omega$ at $-\omega$ as well. This is done in the code with the `physicaloccupfunction:
``julia bathoccupphys = physicaloccup(correlationscdag[:,:,T], correlationsc[:,:,T], omeg, bathoccup[:,:,T], β, N)
-Finally, in the pure dephasing case, it is also possible to obtain the analytical prediction of the time evolution of the occupations of the bath's modes, so that we can compare our numerical results with the analytical ones, exploiting the Heisenberg time evolution relation:
-$$
-\frac{d \langle \hat b_\omega \rangle}{dt} = -i \langle[ \hat b_\omega, \hat H] \rangle = - i \omega \langle\hat b_\omega \rangle - i \frac{\langle \hat \sigma_x \rangle}{2} \sqrt{J(\omega, \beta)}, \\
-\frac{d \langle \hat n_\omega \rangle}{dt} = -i \langle[\hat b_\omega^\dagger \hat b_\omega, \hat H] \rangle= 2 \frac{|J(\omega,\beta)|}{\omega} \sin(\omega t).
-$$
-To this end, it is convenient to choose one of the eigenstates of $\hat \sigma_z$ as the initial state, so that $\langle \hat \sigma_x \rangle = \pm 1$. By solving these differential equations, one obtains the time evolved theoretical behavior of the bath. We define the function for the comparison with analytical predictions:
julia Johmic(ω,s) = (2αω^s)/(ωc^(s-1))
time_analytical = LinRange(0.0, tfinal, Int(tfinal))
Γohmic(t) = - quadgk(x -> Johmic(x,s)(1 - cos(xt))coth(βx/2)/x^2, 0, ωc)[1]
Decoherence_ohmic(t) = 0.5 * exp(Γohmic(t))
αtheo = 0.25 * α function Jtherm(x) if 1 >= x >= 0 return +αtheo * abs(x)^s * (1 + coth(β0.5x)) elseif -1 <= x <= 0 return -α_theo * abs(x)^s * (1 + coth(β0.5x)) else return 0 end end
bathoccupanalytical(ω, t) = abs(Jtherm(ω))/(ω^2)2(1-cos(ω*t))
We conclude the example by plotting.
julia ρ12 = abs.(dat["data/Reduced ρ"][1,2,:])
p1 = plot(timeanalytical, t->Decoherenceohmic(t), label="Analytics", title=L"Pure Dephasing, Ohmic $s=%$s$, $\beta = %$β ~\mathrm{K}$", linecolor=:black, xlabel="Time (arb. units)", ylabel=L"Coherence $|\rho_{12}(t)|$", linewidth=4, titlefontsize=16, legend=:best, legendfontsize=16, xguidefontsize=16, yguidefontsize=16, tickfontsize=10) p1 = plot!(dat["data/times"], ρ12, lw=4, ls=:dash, label="Numerics")
cumul = [bathoccupanalytical(omeg[i], tfinal)*(omeg[i+1]-omeg[i]) for i in 1:(length(omeg)-1)]
p2 = plot(omeg[1:length(omeg)-1], cumul, lw = 4, linecolor=:black, xlabel=L"\omega", ylabel=L"\langle n^b\omega \rangle", label="Analytics", title="Mode occupation in the extended bath") p2 = plot!(omeg, bathoccup[:, :, T], lw=4, ls=:dash, label="Numerics")
p3 = heatmap(omeg, omeg, abs.(real.(correlationscdag[:,:,T]) .+ im*imag.(correlationscdag[:,:,T])), xlabel=L"\omega", ylabel=L"\omega", title="Environmental correlations")
Mhalf = Int(length(omeg)*0.5)+1 M = length(omeg)
p4 = plot(omeg[Mhalf:M], bathoccupphys, lw=4, xlabel=L"\omega", ylabel=L"\langle n^b_\omega \rangle", title="Mode occupation in the physical bath")
plot(p1, p2, p3, p4, layout = (2, 2), size = (1400, 1200)) ```
___________________
Chin, A. W.; Rivas, Á.; Huelga, S. F.; Plenio, M. B. Exact Mapping between System-Reservoir Quantum Models and Semi-Infinite Discrete Chains Using Orthogonal Polynomials. Journal of Mathematical Physics 2010, 51 (9), 092109. https://doi.org/10.1063/1.3490188.
Tamascelli, D.; Smirne, A.; Lim, J.; Huelga, S. F.; Plenio, M. B. Efficient Simulation of Finite-Temperature Open Quantum Systems. Phys. Rev. Lett. 2019, 123 (9), 090402. https://doi.org/10.1103/PhysRevLett.123.090402.
de Vega, I.; Banuls, M-.C. Thermofield-based chain-mapping approach for open quantum systems. Phys. Rev. A 2015, 92 (5), 052116. https://doi.org/10.1103/PhysRevA.92.052116.
Riva, A.; Tamascelli, D.; Dunnett, A. J.; Chin, A. W. Thermal cycle and polaron formation in structured bosonic environments. Phys. Rev. B 2023, 108, 195138, https://doi.org/10.1103/PhysRevB.108.195138.
Settings
This document was generated with Documenter.jl on Wednesday 15 May 2024. Using Julia version 1.7.3.