diff --git a/ObidroidMDSPlots.ipynb b/ObidroidMDSPlots.ipynb index 9098dcc..aa3a0c6 100644 --- a/ObidroidMDSPlots.ipynb +++ b/ObidroidMDSPlots.ipynb @@ -47,7 +47,7 @@ ] } ], - "prompt_number": 149 + "prompt_number": 1110 }, { "cell_type": "code", @@ -67,7 +67,7 @@ ] } ], - "prompt_number": 150 + "prompt_number": 1111 }, { "cell_type": "code", @@ -83,7 +83,7 @@ "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 151 + "prompt_number": 1112 }, { "cell_type": "code", @@ -108,7 +108,7 @@ "# shuffle the dataframe\n", "appData = appData.ix[np.random.permutation(appData.index)]\n", "\n", - "appData.columns" + "main_appData.columns" ], "language": "python", "metadata": {}, @@ -116,13 +116,13 @@ { "metadata": {}, "output_type": "pyout", - "prompt_number": 152, + "prompt_number": 1113, "text": [ "Index([u'appName', u'adjectiveCount', u'avgRating', u'countCapital', u'exclamationCount', u'hasDeveloperEmail', u'hasDeveloperWebsite', u'Unnamed: 7', u'hasPrivacy', u'installs', u'price', u'revSent', u'revLength', u'appLabel'], dtype='object')" ] } ], - "prompt_number": 152 + "prompt_number": 1113 }, { "cell_type": "code", @@ -165,7 +165,7 @@ "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 153 + "prompt_number": 1114 }, { "cell_type": "markdown", @@ -961,7 +961,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 154, + "prompt_number": 1115, "text": [ " adjectiveCount hasPrivacy revLength countCapital hasDeveloperWebsite \\\n", "0 4 True 601 1 True \n", @@ -1093,7 +1093,7 @@ ] } ], - "prompt_number": 154 + "prompt_number": 1115 }, { "cell_type": "markdown", @@ -1117,7 +1117,7 @@ "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 154 + "prompt_number": 1115 }, { "cell_type": "markdown", @@ -1241,7 +1241,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 155, + "prompt_number": 1116, "text": [ " adjectiveCount hasPrivacy revLength countCapital hasDeveloperWebsite \\\n", "0 4 True 601 1 True \n", @@ -1261,7 +1261,7 @@ ] } ], - "prompt_number": 155 + "prompt_number": 1116 }, { "cell_type": "code", @@ -1287,7 +1287,7 @@ ] } ], - "prompt_number": 156 + "prompt_number": 1117 }, { "cell_type": "code", @@ -1305,7 +1305,7 @@ "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 157 + "prompt_number": 1118 }, { "cell_type": "code", @@ -1317,13 +1317,8 @@ " X = (X - x_min) / (x_max - x_min)\n", " \n", " fig, ax = plt.subplots(subplot_kw=dict(axisbg='#EEEEEE'))\n", - "\n", - "# scatter = ax.scatter(X[:,0],\n", - "# X[:,1],\n", - "# c=np.random.random(size=N),\n", - "# s = 10,\n", - "# alpha=0.3\n", - "# cmap=plt.cm.jet)\n", + " fig.set_figwidth(12)\n", + " fig.set_figheight(8)\n", "\n", " scatter = ax.scatter(X[:,0],\n", " X[:,1],\n", @@ -1333,34 +1328,22 @@ " cmap=plt.cm.jet)\n", " ax.grid(color='white', linestyle='solid')\n", "\n", - " ax.set_title(\"Scatter Plot of Unfair/Fair Apps\", size=20)\n", + " ax.set_title(\"Scatter Plot of Unfair/Fair Apps\", size=24)\n", "\n", - " #[x+1 if x >= 45 else x+5 for x in l]\n", - " labels = ['app {0}'.format(i) if main_appData.iloc[i]['appLabel'] == 'unfair' else '' for i in range(X.shape[0])]\n", + " labels = [main_appData.iloc[i]['appName'].decode('ascii', 'replace') for i in range(X.shape[0])]\n", " tooltip = plugins.PointLabelTooltip(scatter, labels=labels)\n", " plugins.connect(fig, tooltip)" ], "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 158 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#dir(plt)" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 159 + "prompt_number": 1119 }, { "cell_type": "code", "collapsed": false, "input": [ - "print(\"Computing MDS embedding with D3\")\n", + "print(\"Computing MDS embedding and plotting with D3\")\n", "clf = manifold.MDS(n_components=2, n_init=1, max_iter=100, verbose=1)\n", "t0 = time()\n", "\n", @@ -1377,16 +1360,15 @@ "output_type": "stream", "stream": "stdout", "text": [ - "Computing MDS embedding with D3\n", - "breaking at iteration 95 with stress 644.63537748" + "Computing MDS embedding and plotting with D3\n", + "Done. Stress: 546.646566" ] }, { "output_type": "stream", "stream": "stdout", "text": [ - "\n", - "Done. Stress: 644.635377\n" + "\n" ] }, { @@ -1396,7 +1378,7 @@ "\n", "\n", "\n", - "
\n", + "
\n", "" ], "metadata": {}, "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEPCAYAAABFpK+YAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8VPW9//HXmX0yS5LJvi8QSABZBIIoRFQEFNGqrRbb\n3oq2hWpVqt5rtyu4td7+rJUibYEuasW6I2JVCoqklrIpAhIIawgkZE8mk2TWM9/fH5jRmAQhEzIJ\n+T4fj3kQzvo+k5PPnPmec75HEUIIJEmSpEFDE+kAkiRJUt+ShV+SJGmQkYVfkiRpkJGFX5IkaZCR\nhV+SJGmQkYVfkiRpkJGFXzpjZWVlaDQa5s2bF+koZ2Xbtm3ce++9DBs2DI1Gw/XXXx/pSJ1s2LCB\nBQsWkJGRgUaj4cc//nGPlrN48WI0Gg2bNm3q5YS9Lzs7m5ycnEjHGJTOi8IfDAZ59dVXufLKK8nO\nzsZkMpGUlMSYMWP4/ve/z9q1a/s0j0aj4bLLLutyXH8rnhqNpsPLaDSSk5PDVVddxTvvvNPlPIqi\nhLXOZ555Bo1Gw7PPPhvWcs6EEIIbbriB5557jilTprB48WLmzp172nnai+dDDz3U7TTt29Abv8fm\n5mauueYa3n77bebMmcPixYu56qqrerQsRVFCr56688470el01NXVATBt2rRO+8kXXz19D8LNeTpt\nbW3ExMSg0Wj41re+dU7WMZDpIh2gN3z729/mxRdfxGAwMHbsWK6//nrcbjcHDx7kb3/7G6WlpcyZ\nM6dPM3W3Q7cPP1c7fE8oisKiRYsAaGlp4R//+Afr1q1j3bp1PPLII/z85z8/Z+s91z788EMqKytZ\nsmQJd91111nNeyb5emMb1qxZg8/nY9myZWHvpz/60Y+YO3cuGRkZPZpfCMEbb7zB1KlTiY+P7zDu\n1ltvJTs7u9M8Y8eO7dG63n///R7NdyZeeuklmpubAXj99ddpaGjA4XCcs/UNNAO+8K9evZoXX3yR\n6OhoDhw4QEJCQofxTU1NfPzxxxFK11n7jdL97YbpBx98MPTzr3/9a5555hluu+02Fi9ezPe+9z2S\nkpJ6fZ198R60N3mMHj36nK+rp3ozY1xcHHFxcT2ef9u2bZw8eZIHHnig07hbb72VoqKicOJ1cC6b\neVasWIGiKCxcuJDf/va3PPvssz1uPjsviQHu/vvvF4qiiJ/97GdnPe+GDRvEnDlzxJAhQ4TZbBbZ\n2dli7ty5YseOHaFpnE6n+PWvfy0uu+wykZaWJsxms8jLyxM33XSTKC0t7bC8v/71r0JRlC5fixcv\nFosWLep2/DPPPNNhWdu3bxc33HCDyMvLEzabTUyYMEEsWrRI+Hy+TtuRlZUlsrOzhd/vF7/4xS/E\nxRdfLKKiosTixYu/8j1QFEVoNJpOw30+n4iPjxcajUa88847Qgghjh49KhRFEfPmzes0vcvlEvfd\nd58YP368sNlsIj8/X9xyyy3iyJEjHaa79NJLu30Pjh079pV5hTj1e7vqqqtERkaGcDgcoqioSDz9\n9NMdptm4cWO369m0adNpl9/+e3rooYe6nab9d/3l96J9+4QQYsmSJaKoqEjYbDYxYsQI8eijjwpV\nVTst43Tvxfvvvy++//3vi4KCAmG320VcXJyYPHmyWLJkSYdlfTn7l7dRURQxbdo04XK5xN133y3G\njx8vDAZDp/3ugQce6PS7aN+m071vPp9PLF26VFx11VUiMzNTmEwmkZOTI6655hqxbdu2Ludp32+7\nel+feeYZ8e9//1t84xvfEFlZWaH39Ezs2bNHKIoirrzySlFXVyf0er0YMWJEt9O3vzdOp1P88Ic/\nFKNGjRKxsbHiiiuuEG+//Xan6dv3rcWLF4vdu3eLm2++WWRkZIi0tDRxww03iAMHDnSax+Vyieef\nf17MmzdPZGZmCpvNJoYMGSJuvvlm8dFHH53xtvWWAX/EP2bMGAB27959VvPdfffdPP300zgcjtC5\ngYqKCj744APy8/MZP348ACUlJfziF7/g0ksvZc6cOZjNZoqLi3nttddYs2YNGzduZPLkyQCMGzeO\nRYsW8dBDD5Gdnc2tt94aWt+0adMQQuB0OlmyZAljx47la1/7Wmj8uHHjQj//5je/4YEHHkAIwYQJ\nE5g+fTpvvPEGDz/8MGvXrmXz5s0YjcbQ9Iqi4PP5uO6663j33XeZPn06d955J7m5uWf9frYLBoMI\nIRBCoNGc/lRQRUUFRUVFHD16lIsvvpgf/OAHHD16lFdeeYW1a9fy+uuvM336dADmzZtHbGwsa9as\n4Wtf+1qHZoLo6OivzPWrX/2Kn//85zgcDmbPnk10dDTr1q3jrrvu4u233+att95CURRycnJYtGgR\nH3zwAZs2berQTJGVldXj9+VM3XXXXSxbtowpU6Zw7bXX8tprr/G///u/1NTUsGTJEuDz/eWNN95g\n165dLFy4kJiYGIDQv7/+9a8pLS3l4osvZs6cORw5coSNGzeycOFCNmzYwJtvvnnGmZqamrj88sv5\n5JNPuO6665g6dSrJyckdplm9ejUXXnghmZmZneYXp/mGVl9fz8KFC7nkkkuYOXMmMTExbN68mXXr\n1vHOO+/w4osv8vWvf73TfN01la1fv54777wTm83GzTffTE1NzRlv54oVK4BT+1pcXBxz5sxh9erV\nfPjhh0yZMqXLeZqbm5k+fTptbW1Mnz6duro61q5dyzXXXMPTTz/ND3/4w07z7Nmzh2XLlnHBBRdw\n8803s3//ft544w3ef/991q1bR2FhYWjaG2+8kfXr1zNy5Eguv/xykpKSOH78OB988AFFRUVceOGF\nZ7x9vaLPP2p6mcfjCR2ZfvOb3xQvvfTSVx45rlmzRiiKIsaMGSOqqqo6jFNVVZw8eTL0f6fTKerr\n6zst49NPPxVarVZMmDCh0zhFUcRll13W5brLysq6PWoWQojdu3cLnU4nCgoKRHl5eYdcv/zlL4Wi\nKOLhhx/uME/7EdHFF18sDh482P2Gd6G7I/4///nPQlEUodfrRXV1tRCi+yP+b33rW0JRFPGTn/yk\nw/D169cLRVHEkCFDhNfrDQ1vP6p79tlnzyprSUmJ0Ol0IiUlRZSVlYWGu91uMX36dKEoili5cmWH\nebo7Aj6d3jjiz8/PF/v27QsNr6urEwkJCcJoNIra2toO83z3u9/t9hvPl78xCSFEMBgUc+fOFYqi\niLfeeqvL7F0d8SuKIq677jpRUVHR5TZ9+umnQlEU8dhjj3W5TbfeeqtYtGhRh1f7t0qv19vlcmtq\naoTNZhPp6ekd9gEhTu23OTk5HYZ98VvQihUrhN/v7zJrd9xut4iNjRUxMTHC4/EIIYR48803haIo\n4jvf+U6X87Svb86cOR3WV1JSImw2m7DZbKKmpiY0/IvfJn/1q191WNZzzz0nFEURkyZNCg07cuSI\nUBRFjB8/vsv1NzY2ntU29oYBX/iFEGLt2rWh4tf+SkxMFN/61rfE+vXrO00/YcIEoSiK+P3vfx/W\ner/+9a8LRVGEy+XqMPx0hf90zSVCCHHzzTcLRVHEc88912mcy+USVqu10x9L+7b/+c9/Putt+HJT\n1H333SdGjBgR+kD45S9/edrsNTU1QlEUodVqQx8QXzRq1CihKIp4+eWXQ8N6WvjvvPNOoSiKuOOO\nOzqNe/XVV4WiKJ2+0keq8H+5IAjx+e+2uLi4w/DTFf7utBfp++67r8vsXRV+jUYj3nvvvW6X+cgj\njwhFUURJSUmX29TVq6uDhi9rb47dvXt3h+GnK/yZmZlfudyutBfeBQsWhIYFAgGRlJQkzGZzl0W2\nfTu+/CEqhBDXXXedUBRFPP7446Fh7YVfr9cLp9PZYXpVVYXD4RCKoogtW7YIIYSorKwUOp1OzJo1\nq0fbdC6cF5dzXnPNNRw6dIji4mIWLVrE7NmzaWlp4YUXXmDGjBkdruYQQlBSUoJWq+WGG244o+V/\n8sknfPe736WgoAC73R66jO21115DURQOHjzYa9uyZ88etFotBw4cYPHixR1eTzzxBElJSZSXl+P1\nejvMpygKV199dY/X+9BDD/Hwww/zu9/9DrfbzcyZM3nrrbf46U9/etr5Dhw4AJxqtkhMTOw0vj1T\naWlpj7O1a19GV9s5Y8YMtFothw8fJhgMhr2ucN10002dhrWfGD1x4sQZL8ftdvP73/+eiy++mLS0\nNPR6PRqNhgsuuACAQ4cOnfGyrFbraU/Orl69mmHDhlFQUNDl+A8++IBgMNjhpapqaPyhQ4f40Y9+\nxKhRo4iNjQ39nfzmN78B4PDhw2ectaeXs7af1P3iJaZarZZvf/vbeDwe/va3v3U5n16v7/IS7Fmz\nZgFd77+FhYXY7fYOwzQaDVdeeSUA+/fvByAlJYWrr76adevWMWbMGB599FG2bNkS0f10wLfxt9Pp\ndEyZMiXUhud0Olm1ahULFy4MXSY3Y8YMamtrcbvd5Ofnn9GVKu+//z4zZ85Er9dz+eWXM2PGDGJi\nYtBqtWzcuJFNmzbhcrl6bTvKyspQVZXHHnus22kURaGmpqbDJXvp6emd2mvPlKIoHf6Az0Z7EZs0\naVKX49uHn02xO926FEXpcl02m42CggL27t1LTU1Nj98LOLUvAfj9/m6n8fl8Hab9IkVRujy/EhUV\n9ZXL/SJVVbnuuuvYsGEDeXl5XH311TgcDiwWC0IIHnroodAli2di7NixXeYFOHbsGDt37uzyap4z\nsXfvXiZPnozH42Hq1KlcdtllxMTEoNfr2blzJ2vWrDmrrN3tT6ezb98+/v3vf1NQUNChfR1OXZH0\n5JNPsnLlyi4v6y0oKAj9fr6ofTkVFRWdxk2cOLHLHIWFhbz88stUVlaGhv3973/nueeeY+nSpTz4\n4IM8+OCDxMbGcvvtt7N48eIu130unTeF/8uio6O54447+PDDD3nxxRfZuHEjM2bMICEhAbPZzMGD\nB6mqqvrKAvHzn/+cYDDICy+80OFkLMDmzZt7PXd6ejoVFRW0tLSc1XxarbbXs5yJ9g+frVu3djl+\ny5YtwKntCld6ejqlpaVs3bqV2bNndxjX3NzMvn370Ov1YV962n7yt6s/9nbt47q6rr23bNiwgQ0b\nNjB27NhOlyRv2bLltDeYdeV0+8jq1asBzvhb8Jc9+uijtLS08OSTT7Jw4cIO4xYsWHDWy+vJ/tx+\nUnffvn3dXpDw6aef8p///Cd0QUa7ffv20draisVi6TC8fb9OS0vrtKxt27Z1uY6u5omKimLBggUs\nWLCAQ4cOsXHjRv7whz/wxBNPEBcX1+MP3J46L5p6Tqf9po32Ix1FURg5ciSqqvL6669/5fz79+8n\nKyurU9Gvra3lvffe6/KqBK1Wi8fj6XJ5er0eoNvxY8eOpa2tjY8++ugrs/UHw4YNA2Dnzp2hOz2/\nqP3u3/z8/NCwr3oPutO+jHfffbfTuPXr16OqKkOHDg37pqr29XT3hw2f/3EPHz48rHWdTntTwZcL\nKZw6guxNq1evJi0trduj2K+yf/9+zGYzd9xxR4fhfr+fV199tTcinpbX6+Vvf/sbGo2G22+/ne99\n73udXjNnzgRg5cqVneb3+Xxs3Lix0/D2fe2L+2+77du343Q6OwxTVZUNGzagKEqX8wAMHTqU73//\n+7zzzjvo9fou85xrA77wr1q1itdff51AINBp3KFDh1i5ciWKonDxxReHhv/iF78AYPny5VRVVXWY\nJxgMdhg2e/ZsysrK2Lt3b2hYXV0dixYt6rZ5JDU1lV27dnWZKSkpCUVRui3sP/vZz9Dr9Xz/+9/v\n8saz1tbWbo+uIyE+Pp5bbrmFYDDI7373uw7j3nvvPfbu3Utubi7XXXddaHhqaioAO3bsOKt1tXcl\nsHr1ao4fPx4a7vF4WL58OdB1kTxbEyZMoLCwkJKSkk7bBKeK5D//+U+ys7M7ffPoTVdffTWKovDW\nW291GL5p0yZeeumlXltPbW0tmzdv7nRwczZmz56N2+1mw4YNoWEtLS08/vjjNDQ09EbM03rttddo\naGhg1qxZrFy5khUrVnR6vfzyy0RFRfHKK6902ey0fPnyDs1wJSUlvP/++9hsNm677bZO06uqyu9/\n//sOw1atWkVjYyOFhYWhZqIv1492x44dw+/3f+Xl0ufCgG/q2bFjB0uWLCEhIYEJEyaQm5uL3+/n\nww8/pKSkBEVRuO222zqcLLr22mu58847WbZsGSNHjmTGjBlkZWVRVVXFxo0buf3220N3si5YsIAX\nXniByZMnM336dEwmE6+//joJCQncdNNNvPzyy50yzZgxgz//+c8UFRVRVFSE1Wrl0ksvZerUqeh0\nOi6//HLee+89rrzySiZNmoTJZOK6667jggsuYMyYMTz55JPce++9TJgwgYyMjFBxOXbsGMXFxUyd\nOpW33367b97gM/B///d/bN68mUcffZSNGzdSWFhIWVkZb775JlarlT/84Q+ho3w4VVgdDgd///vf\naWxs5IILLkCj0XD33Xd3Oln2Rfn5+SxatIgHH3yQCy+8kNmzZ2Oz2fjnP//JwYMHmTlzJt/73vfC\n3h5FUVi5ciXTp09n4cKF/P3vf+fCCy9Er9ezZ88eNm7ciN1uZ+XKlZhMpk7zi166IzkvL4/LLruM\nV199lVGjRlFUVMT777/PgQMHuPfee3nyySd7ZT1r1qxBVdWwOq/7wQ9+wOOPP86NN97IpZdeSmpq\nKq+88go6nY7bbruNv/zlL72StTvtzTyn+/3bbDZuuukmnnnmGZ5//vkO307Gjh1LTU0N48aN44or\nrqC+vp4333wTt9vN008/3an7CoDrr7+e3/72t6xfv55x48ZRWlrKO++8Q0xMTOheDTh1ccgNN9zA\n+PHjGTlyJImJiZSUlPCf//wHRVH4yU9+0ovvxBmK8FVFYTt+/LhYtmyZuP7668Xw4cOF3W4P3Tn6\nta99LXTXaVfeffddMXv2bJGdnS3MZrPIzc0V3/72t8XOnTs7TPfBBx+IBQsWiOTkZDFq1Cgxb948\ncezYMbF48WKh0Wg6XTpXV1cnfvCDH4js7GxhMBiERqPpcGlgWVmZ+OY3vynS09OFTqcTGo2m06WN\n+/fvF9/5znfEmDFjhMViEYmJiWLcuHHivvvu63SnX3Z2dqfL4s7UmV6SJ8RX37l77733igsvvFBY\nrVYxfPhwccstt4jDhw93uazi4mIxbdo0kZCQEMpwppczrl+/Xlx11VUiPT09dOfu0qVLu5y2u9/R\nmWhqahL/8z//IyZPnizi4+NFbGysmDhxorjjjjs63f/Rbtq0ad2+n88880yXv+tbb7212+2vra0V\nTz/9tJgyZYqIi4sTM2fOFH/84x+FEF1fNtzd9p7uEuOrr75axMXFdXkn8Be36avew48++kjcd999\nIjMzU+Tl5YlbbrlFfPLJJ91ud1f7bXfTnk5paalQFEWkpKSIQCBw2mk3b94sFEUR48aNCw1rf2+a\nm5vFHXfcIUaNGiUcDsdX3rn70EMPiT179nS4c/fGG2/sdC/NiRMnxM9+9jNxySWXiOTkZGG1WsVl\nl10mHnnkkdAln30t7MI/b948kZiYKEaNGtXl+Oeff16MHj1ajB49WsydO7dTNweSJEVOc3OzMBqN\n4tZbb410lIg53YdiV75Y+AeqsBuX5s2b1+XJtna5ubkUFxeza9cuZs6cySOPPBLuKiVJ6iVvv/02\nfr+/Xz6jQDp3wi78U6dOJTY2ttvxkydPDvXBMnv27AHxgAhJGixuvvlmVFXl2muvjXQUqQ/16enk\nFStW9Hm/+JIkSVJHfXZVz4YNG3j++efPyU1PkiRJPXW2XSdMmzatX3QLEo4+Kfy7d+9mwYIFvPvu\nu6HuZr9o+PDhoT5fJEmSpDMzZMiQs+qvqd05L/zl5eXceOONrFq1iqFDh3Y5zYEDB/rkJo9z5Ykn\nnuD++++PdIwek/kjS+aPnIGcHejx4yTDLvxz585l06ZN1NXVkZGRwUMPPRS6+23+/Pk8/PDDNDQ0\nhPrr0Ov1p70VXpIkSTq3wi78X9VnyJ/+9Cf+9Kc/hbsaSZIkqZcM+L56+oPefAB1JMj8kSXzR85A\nzh4ORYhe6lgknBCKMqDb+E0m01n3NNmfyPyRJfNHzkDODqfa+HtSwuURvyRJ0iAjC78kSdIgIwu/\nJEnSICMLvyRJ0iAjC78kSdIgIwu/JEnSICMLvyRJ0iAjC78kSdIgIwu/JEnSICMLvyRJ0iAjC78k\nSdIgIwu/JEnSICMLvyRJ0iAjC78kSdIgIwu/JEnSICMLvyRJ0iAjC78kSdIgIwu/JEnSICMLvyRJ\n0iAjC78kSdIgo4t0AEmKtGAwSEtLC0IITCYTRqMx0pEk6ZwKq/Dfdttt/OMf/yAxMZE9e/Z0Oc1P\nf/pTXnrpJWJjY1m1ahX5+fnhrFKSwuZ2u/lk1yfs2rmdkwfLCBgE6aOHkZGdgVlrJjk2maFZQ+UH\ngHTeCqvwz5s3j7vuuov/+q//6nL8tm3b+Ne//sWOHTtYt24d999/P2+99VY4q5SksOwv3c/v/7KU\n8p1b8DZU49e5ETqB9wMdwpHM9OuuZ+KFE3GVuBg/ajx6vT7SkSWp14XVxj916lRiY2O7Hb9161a+\n/vWv43A4mDt3Lvv27QtndZIUlsrKSp7865OUl/yLoFKFkufHVGTEdqkF+0QFs6GKNW/+nXf/9S41\nnhpOVp2MdGRJOifO6cndbdu2MWLEiND/ExISOHz48LlcpSR1a9OWTZyo2I9WaSWYJNCl6tAZdaBR\nMMQYMWVoibK0sbNkJ4crD1NWVRbpyJJ0TpzTk7tCCIQQHYYpitLltE888UTo56KiIoqKis5ltF6l\n0+kwmUyRjtFjgyG/qqqkpadx+823o1XbEPYgik4B3ef7YzAQRG0FF2YyEjPISc3BaDR2u8/2Zf7+\nbCDnH2jZi4uLKS4uDns5ivhyZT5LZWVlzJkzp8uTu0uXLiUQCPDjH/8YgCFDhnR5xK8oCg0NDeHE\niCiTyYTH44l0jB4bDPk9Hg/3Pnovh/b9C4vBiZqiggY0Zm1omqBfxVMlOK6LpjCnkG9M+gbXTL/m\nXMcfFO9/fzWQswM4HI5OB9dn4pw29UyaNInXXnuN+vp6XnjhBQoKCs7l6iSpW0ajkYToBNq0GgJu\ncepo3w8EP/+jCQYELUKDRqPB3+onJzUncoEl6RwKq6ln7ty5bNq0ibq6OjIyMnjooYfw+/0AzJ8/\nn8LCQqZMmcKECRNwOBw8//zzvRJaks6WoijMuGQG73/6Pq3OJqyuABqLlmCbisasIagE8TUHaTIY\nsPiiGJ4wnGF5wyIdW5LOibCbenolhGzqiajBkj8YDPL/lvw//vbPvxIVcBKbA4YoHQFPgNaWIFUB\nLUK1UJhcyGP3PUZ2dva5D8/gef/7o4GcHXre1CPv3JUGDY1Gw/13309mSiZPPfcU+/ccQxvlQTWA\nqjHiwMHlYy/nvgX3kZGREem4knTOyCP+XjDQjxoGY/5AIMCePXvYvn07LpeLtLQ0Jk6cSE5ODhpN\n33ZhNRjf//5iIGcHecQvSWdFp9Mxbtw4xo0bF+koktTnZO+ckiRJg4w84pdOSwiBy+UiEAig1+ux\n2WyRjiRJUphk4Ze6VV9fz/6y/XgUD2hB+AV2vZ38nHzsdnuk40mS1EOyqUfqUl1dHR8f/hh9op64\n9DjiUuKIz4wnYAuwY/8OXC5XpCNKktRDsvBLnQghKD1WSnRKNAajocO4KGsUBoeBw+Wysz1JGqhk\n4Zc6aW5uxq24OxX9dla7lYbWBrxebx8nkySpN8jCL3USCATQaE+/awidCHXPIUnSwCILv9SJXq9H\nBLq/KUQIgRJQMBi6/kYgSVL/Jgu/1IndbseiseBuc3c5vrmpmaSYJFn4JWmAkoVf6lJBbgFt1W20\ntrSGhgkhcDY60bg05GbkRjCdJEnhkNfxS12Kjo5mYsFEDh07RH1d/ak9xQ9J0UnkjsjFbDZHOqIk\nST0kC7/ULbvdzoUXXIjb7SYQCGAwGDAajZGOJUlSmGThl76SPLqXBiKfz0cwGMRgMPR5j6v9nSz8\nkiSdVxobGzly/AhOjxOhCAyKgaykLNLT0uUHwGdk4Zck6bxRXV3N7mO7scRbcCQ7AAj4AxyoPUBj\ncyMXFFwgiz/yqh5Jks4Dfr+fpqYmdh/ZTWxaLFHWqNA4nV5HfGo8Nd4aampqIpiy/5BH/JIkDViN\njY1s+WgLHx/8mMraSpxeJ4VjC5lYOLHTuSlbnI1jVcdITk6OUNr+QxZ+SZIGpNraWp5d+yyH2w7j\nMXhojWnFhYs3St5g8yebuX3u7SQkJoSmN5lNNJwcuI947U2yqUeSpAHprY1vccR3BF+0D1umDVuC\nDY1BgyHVwFHNUZb8eQnlx8tRAypwqq1fp5XHuiALvyRJA1BNTQ0Hag/gMXiwJdkQQUGzqxmv14sh\nxkDi6ETqDfX8Z99/KD1aihpQcTW6yEzKjHT0fiHswl9cXExBQQF5eXksXbq003i32813v/tdxo0b\nx6WXXsqaNWvCXaUkSYOc0+mkvq0enUWHRqehoa4Bfbwee7Qdb7MXRVHQx+qpb62nRbRw5OgR9B49\nKUkpkY7eL4Rd+O+55x6WL1/Ohg0bWLZsGXV1dR3GP/vss1gsFnbu3Mlzzz3HvffeixDd9/woSZL0\nVYxGI6pXRdEr+Dw+/PjRGXVY46xY9Vb8tX4CTQHcLW58Th9Nx5sYmz9W3nn+mbAKv9PpBKCoqIis\nrCxmzJjB1q1bO0wTHR2Ny+XC7/fT0NBAVFQUiqKEs1pJkga51NRUoonG4/IQ9AdRdJ/VFA1Y4ixY\n7VbiDHHkxeUxNn8sQ4YMQaeT7fvtwir827dvJz8/P/T/ESNGsGXLlg7TzJ07F1VViY+PZ8qUKaxa\ntSqcVUqDQCAQwOv1EgwGIx1F6qd0Oh3XTLmGxr2N+Ly+Dq0IqlvFU+khPS2dUSNGYbVZQSBv3PqC\nc/4R+PTTT6PT6Th58iR79uxh9uzZHDt2rNMv4Yknngj9XFRURFFR0bmO1mt0Oh0mkynSMXqsv+T3\n+/00NTcCdXLTAAAgAElEQVTR4m4BBRQUoi3RRNujT/tH21/y95TM3zNXz7qalNQU9p/cj9/gx2A3\ngArCK7AOt5Ick0xqUiqqqpJdkI3dbu832XuquLiY4uLisJejiDAa3J1OJ9OmTWPnzp0A3HXXXcya\nNYvZs2eHprnpppu4/fbbmTlzJgCTJk3i2Wef7fBNQVEUGhoG7vW1JpMJj8cT6Rg91h/yNzc381Hp\nR2jsGuwxdhRFQQ2oOOudWFQL40aM6/bBL/0hfzhk/vDs2rWLF958gaOuo0SnRJOWlEZuai7Dcoeh\nUTQ0VzZTWFDYZeGPdPZwORyOHp0zDeuIPzo6Gjj1KZSZmcn69etZtGhRh2muuOIK1q5dy5VXXklZ\nWRkNDQ0dir4kAZQcLsEUb8Js+fxuS61OiyPJQWNNI+UnyhmaOzSCCaX+asyYMVxwwQWU7CvhcPVh\ndDYd5igzrnoXJtXE+GHjuyz6g1nYTT1PPfUU8+fPx+/3c/fddxMfH8/y5csBmD9/Pt/85jcpKSlh\nwoQJJCQksGTJkrBDS+eX5uZmWoItxFviuxxvj7Nz/PhxcrJy0Gq1fZxOGgg0Gg2jRo5iWN4wmpqa\n8Pv9mEwmYmNjZdt+F8Jq6um1ELKpJ6Iinb+2tpbdJ3cTlxzX7TQN5Q1MHjm5y2cDRDp/uGT+yBnI\n2aHnTT3yo1CKOK1WS1A9/RU8QhXyaF+Seoks/FLERUdHo/PrQn2qfFmLq4U4a1y3J3clSTo7svBL\nEafVaslLy6O+sr5T8fd6vHjqPORm5EYonSSdf+StbFK/kJ6WDsCB8gO4VBdCEejQEWOIYcLwCfKq\nDEnqRbLwS/1Ge1ceqldFKAKCYLKY0Ov1EU4mSecXWfilfuH4iePsq9qHI8OBQ+8IDW9pbuGjfR8x\ncWTnJypJktQzso1fiji/38/ByoPEpcWh03c8FrHarQQtQU5UnohQOkk6/8jCL0VcU1MTQUMQjUZD\ns7OZxvpGPO7Pr622x9o5UX9CdtomSb1ENvVIEef3+6mprWH77u3Ut9WDFnSqjuykbEaPHU2UJQqB\nQFVVeRemJPUCWfiliKusrKT4k2ISRyWS6EhEURQCvgBHKo5Q/UE1V0y9Aq2ilf2pS1IvkYdPUkT5\n/X4279uMI8eBzqzD7/WjBlR0Bh0JOQm4TC52/GcHWUlZ8gE+ktRL5CGUFFHl5eU4hROdouNQ6SEM\nVgN6jR5blI2Y2BiMdiMVn1aQlJAU6aiSdN6QhV+KqMrKSo43HScmOgZbrA1Xiwuf1kdboI2GqgYK\nhhagJqqoatfdOUiSdPZk4ZciRghByZESGrwNaBUterueGFsM7hY3WlWLI9WBElTQaXTyIdmS1Itk\n4Zci5uTJkzSIBiwGC3qTPnTy1ma04ff4cbW6cJ10MSt7lrx7V5J6kTy5K0VM+YlydNE64oxxHPrP\nIU4ePYm31QuA3qTH2erEW+ll7MixEU4qSecXecQvRcyufbvYXrqdQGwAf8DPkT1HOGY6RqwtlrjY\nOMwBMyNzRpKYmBjpqNJ5pq2tjcb6euLj4mhobMQRHz+omhNl4Zci4vDhw3yw9wPa4tuISo8iQZ9A\nTGsMbTVt4IJUUyrpWenkiBzZzCP1GiEE5YcP4z52jDhFwWQwoCkt5VBpKbHDh5OalhbpiH1CFn4p\nIl5+92UsQy2YY8y0eFvQWDSYzWZMsSbaqts4VnWMWF0soy4dFemo0nmk4tgxOHqUEfHxKIqC0Wgk\n1eEgSVU5+Omn1Or1JAyCb5iyjV/qcydPnqTMWYbFZqHhWAOBhgCeKg/eJi++Fh9CEbicLlIMKaSn\np0c6rnSeCAQCNB09SpbD0elmQK1WS1ZMDLVHjkQoXd+SR/xSn9u6dSubP9qMt8pLwBBACSpEBaJI\nTU4lMz+ToD5Ik6mJkXkj5XN2pV7jcrmwq2q3+5TZaERXX09bWxtRUVF9nK5vycIv9andu3fzvyv/\nl+qYanRxOhSjgqIq+Pw+vDVeDBgYWzgWnVFHUpK8W1fqPcFg8Cs7+dNy6jzA+U429Uh96o6f3UFd\nUh0iVuBv9SP0Ao1JA1HgdripqKnAedJJujVdNvNIvcpsNtNymqIeUFXcGg0mk6kPU0VG2IW/uLiY\ngoIC8vLyWLp0aZfTbN++nYkTJ1JQUMC0adPCXaU0QD333HOUlJUgDnmJ2qli+FDFs8FDS3ULKiqq\nolLnquPk1pN8Y8Y3Ih1XOs9ERUWhiY+nvrm5y/FVTU1EZ2UNiubFsJt67rnnHpYvX05WVhYzZ85k\n7ty5xMfHh8YLIbjtttv47W9/y/Tp06mrqwt3ldIA1NLSwn2/WEiWA+I1oDGDVw8tfji5Gdw5HgwO\nA36nn4tGXkR+fn6kI0vnoaz8fA7v3Imnvp54mw0j0ObxUONy0RoXR15WVqQj9omwCr/T6QSgqKgI\ngBkzZrB161Zmz54dmmbHjh2MHj2a6dOnA3T4UJAGjwsnjmWcDob7wdIEqgacFmg0gSEajpSBkqag\nV/VcOO7CSMeVzlNGo5G88eOpqa6mtLycdLebSkXBccEFpCYkDIqjfQiz8G/fvr3DkdmIESPYsmVL\nh8K/bt06FEVh6tSpxMTE8KMf/YiZM2eGs1ppgFmxYgVxzgYucYAlBtADPnC0gs0DwVho1EH1US/R\nLdFccsklkY4sncf0ej1p6emkpadjMpmITkmJdKQ+d86v6vF4PHzyySds2LCBtrY2rrzySj799FPM\nZnOH6Z544onQz0VFRaFvEQOBTqcb0CeEzmV+VVXxed08tngRiVZQAFWBgA4IQtALTgWqdFDnhotG\nXoTdbu83+fuCzB85Ay17cXExxcXFYS8nrMI/ceJE/vu//zv0/7179zJr1qwO00yePBmv10tycjIA\nEyZMoLi4uNNR//3339/h/x6Ph4HCZDINqLxfdi7zOxwORkXDDCPkOgjtcb4gNBkgEIC6RviPAiWN\nWiqPVJ51Fvn+R9ZAzj/QshcWFlJYWBj6/y9/+cseLSesq3qio6OBU59CZWVlrF+/nkmTJnWY5qKL\nLmLTpk20tbXR0NDAzp075Vf5QWLy5Mk4TBCrgyY/1DRBWzPgA4MGon2A7tRnQUsL3Hn7nbJfnkFA\nVVWamppoaGjA7XZHOs6gFHZTz1NPPcX8+fPx+/3cfffdxMfHs3z5cgDmz59PXFwc8+bNY8KECSQk\nJPDwww9jtVrDDi71b3/5y184dqKU8RZINUKcBmL94A1CfSs4BBgMYAhAYxtUeGDx4sWRji2dQ0II\nTlSc4PDJwwS0ARStgvAIEu2JDMsZNqCaXAY6RfSD29QURaGhoSHSMXpsoH1d/LLezt/Q0MCooUMp\ntMEoHegC4NVAlAI5RmhTwAPYLXC4Gd5xwYN/fIZrr722X+Tva4Ml/+GjhznceJi45Di0us+vnmlu\nbEbfqmf8qPEYDIZzGbWTgf7eOxyOHt1pLLtskHrdyKFDuT4KLoyDNEB4QVXhuBf2eSDRCuVu8Av4\nJAAuW3yPi740MHg8Ho7WHCU+K75Ttwn2WDv1vnqqqqvIzMiMUMLBRRZ+qVeNmzyOSVEwzgJmK3hb\nwWIGvJCjQIsHyoEGExz1wKfNUFe9P9KxpXMgGAxy/Phxqo8do76mhgZjG/ZUOwZj56N6e6yd8qpy\nWfj7iCz8Uq95ffXrVFccY3oUKNpTl2626UEfAIMJgn5IDMJ+D9RoocwJD9z/wFd2nCUNPE6nk/f/\n8SZKUxWxVgNeZyOupjo+KTtKTtFkElI69nmvN+hp9nfdlYLU++RfnBS2YDDIv/7zL55c9SQWI1gt\n4FYAL2A8ddmmU4CqBYsJ/EE44gdzfBIPPPBApONLvczj8bD6pefR1h4lMzmGpOR40tNSSclykBAV\noGzjv3A1uzrM4/P6iDKe310h9yey8Eth21Oyh00HNiHiBT49tAnwmk818+AHRQ8+CzREQY0CJ/xQ\n7YR9+/ZFOrrUy2pravjg1VfR79/DsGAQQ9kJ6j4tJdDqAS/YYq1YFR9VB452mK+5vpms5MHRT05/\nIAu/FJbm5mYOnDyAJcWCzWHDFQ1HPBCMgnoTuJygNkGwBdRmKK2H3S3QUDdwr+KSutbY2EjDrl3o\nm+ooSI7DbrXgsFnJtlrRVddiEWZaGlow2Q00lJUjhEBVVRpqGojVxMrnL/Qh2cYvhaW6rhrFrKD1\nadHZdJjjzXzkdhPTALnR0GQElxuEBypaYJ0XNrz3XqRjS73M7XZTsm0bGV4vHndbh/M2GkUhyWbF\n0+YhJjODyqoKXLXN1J+oR6tqyYjPICczZ9B0kNYfyMIvhcXr92KxWKitrCUzMxNni5MD/gO8U+Nn\nSANkK6AJwgkP7AvAspV/Zdy4cZGOLfWSYDBIVU0Vazespe3oQfQZKbSoLvZWVBAzfBgGoxEArUaD\nJaii0elw2BMYnZrGRcMvwmQyodPJMtTX5DsuhcWkM+H1ePG0ekgdkorH70Gr11JZWsmn1fXscQpo\nBUeMg7V/fUUW/fOIz+fjhVdfIGN4Btvrt2OqqybYXElyTDI1JigtL6MgOxfdZ91waAGvz0d1o5uL\nLiuUd/BHkCz8Uo+0tLRQdqKMY9XH2HtwL56AB2+Zl6zMLBITEqlMr6SxoZHWylYK0wu5ZPIl5Obm\nRjq21EtUVeWvf/8rW6q3cMf0O0jzpdGmBjAZNBw7WY7ZFMX+lmZE+QnyMtLRaTQcb2ymXjEwYvJ0\n0tLSIr0Jg5os/NJZq66uZu37a2kRLdij7SQnJlNzsgZdlI768nqiY6LJjM8kUUkkJzeHwosKcZ50\nyjbc80RxcTFP/vlJ9tTuQbEpXD72ckr2lpCWnkRrbTPxmfHUH6kjv+ACKsqq8DW20dLmpi0hnStv\n+AZZg+QpV/2ZLPzSWSktLWX56uUEkgJYY62cdJ/EX+/Hd9KHNcqKRqNB36onwZ5A5thMUtJS8Lq9\n2A12+dX+PPDYY4/xx3/+kbbYNjSJGvR2Pa3mVv6191/knchDjBiGcLWhWLT4fF5GDS8gIyWXGr2e\nvEmTiIqS1+r3B7LwS2fsxIkTvPKvVzAMM5CS/vlTi0SGoEJfQXNlMxdccgGB5gATx0xEp9fhcXto\nq21jwvAJEUwu9Yaf/OQnrPjnChgOWEA1qqg+FZ/bRyAhwKHqQ2S6M9FnJ9F6oIL6qipGmZNIHjKE\n4WlpsvfNfkQWfumMbdu9DUOyoVNfK4qikDYijfIt5QRqA7g9buoq69ApOqxaK+OHjQ89u0EamB5/\n/HFWvLkCxgFJnOqPA0AFoRe0VrdisVko2VvCsMJheAN+zNGxTJ19feghTFL/IQu/dEZ8Ph9Ha4/i\nKHDQ0tDSabyiUTAnmXHYHViiLYzLHIfZbD7rxyhK/U9JSQm/XvFrGAOkAlZOXaLj++ylnCr+voCP\npsYmPG4PTYeauGrSVfKmrH5K3rkrnZFgMAgasFgsaFQNQTXYaRpFq+ByuchOzSYpKUkW/fPElOlT\nThV8I+DiVB9MXk4VfzOnqogGfE4fqlelZmcNl2VfxqVTLkVRlO4XLEWMPOKXzojBYCDWFEtbaxvJ\nsclUNFZgdVg73KHpafBgS7WRnZYduaBSrxo/YTxRVogDrD4Q1dDYAPUxEEgE9Jxq9vEA9ZAXm8ct\nl9zCpPGTZNHvx2Thl86IRqNhQv4E3i19l8wRp/pMr6qvIqg79U2gtb4Vm8vGzKkzsdlsEU4r9YY3\n33yThsaj5KaB3gFEg6KAWQOxzXBYBX8qp478m8Bca+Z3v/8dOTk5EU4ufRXZ1COdsZEjRjIyZiTl\nn5ajERryMvJIiUpB16Aj0ZXIXd+5i9jY2EjHlHrJrfNuJTkOLDqwNIOx6tST1IQKUVGQXA/UAU7g\nEDx+z+Oy6A8Q8ohfOmNarZZZl81iyKEhfLT/IxqONqBVtEzLmcboEaOJiYmJdESpl/z85z8n1Q7j\nOfXwHF0A3D6obYOjceB3QLQOKo4DdXBJ9iV85zvfiXRs6QzJwh8GIQQu16kHSrjdbsxmc4QTnXta\nrZb84fnkD89HVVU0Go1syz0PPfOXP3ClBbJjAAMQBIMXrH7QV0NJK2gE6KoAF6xduzbCiaWzIQt/\nD504cYKtu7dS2VzJlPFT2LJjCwWZBRSOKxw0dyfKLhjOT3/605/IMZx6WlqgDXSCUydw9aDVQWoL\nHG+Fah/4auC+u+8jEAhEOrZ0FmQbfw8cOXqE1za9Ro25BscIB/YUO9Z8Kx/Xf8yr77yK2+2OdERJ\n6rH/W/IrkvSgRoHbz+dVQgUU0NvA4Yd6J8y9ca7sVnkACrvwFxcXU1BQQF5eHkuXLu12uu3bt6PT\n6Xj99dfDXWVE+f1+NmzbgCXHQlxKHHrDqS5njWYj6cPSqdXVsmPnjginPDOqqiKEiHQMqR+pq6uj\nyd+IiAFdLNTpoaUVghpOXbrpg4AbnHVQVwfLli2LdGSpB8L+qL7nnntYvnw5WVlZzJw5k7lz5xIf\nH99hGlVVeeCBB5g1a9aALzQVFRU4hZMsR9c9DCblJLFz904unnRxv2wKUVWV6qoqGsvKEB4PQlHI\nu+gihKIMinMU0um98cYbqAlQH4D4RtAYoNIH5jow6UD1QWsb7PfABxs/iHRcqYfCOuJ3Op0AFBUV\nkZWVxYwZM9i6dWun6ZYuXcrXv/51EhISwlldv9Dc3IzW0n1BNxgMBJQAra2tfZjqzKiqysFduxD7\n9jFcr2dMXByjY2IwuVwc3ro1dKJaGrze2/we6MGlBVUHyUCiAYQOnAq0RkGFDwLWeEaPHh3puFIP\nhVX4t2/fTn5+fuj/I0aMYMuWLR2mqaioYM2aNfzwhz8EGPBXgBiNRoKBzt0VtFNVFUUo6D976lB/\ncrKigujGRjLj4zEaTnW0ptFoiDIayTUYOL53b4QTSpEUDAb5eP9HZJkhNheao+GkEYJ6iNGD6oXS\nVtihwCuvvBrpuFIYzvlZmYULF/L444+jKApCiG6bep544onQz0VFRRQVFZ3raD0yYsQI3IqbqKSo\nUFNOqj0V0k+Nb3O1cfFlF/e7G5mEENiNRhLGjUOr6fh5r42JIX7ECJS2NhRFwfjZc1IHCp1ON6C7\n/O0v+WtqavjJHQuxOVSCxiCooPeAJgCKAH8QanxgEnYKCwtD8/WX/D0x0LIXFxdTXFwc9nIUEUaj\nu9PpZNq0aezcuROAu+66i1mzZjF79uzQNLm5uaFiX1dXR1RUFCtXruTaa6/9PISi0NDQ0NMYfW7L\n9i1sOrKJtII0DAYD49PHs+P4DpyNTjzHPHxj2jdISUn56gX1Ia/XS9m//80Ih6PTOGN2Nt6yMirr\n62HUqAHXo6LJZMLj8UQ6Ro/1l/xvvPEGv1t2D9EJgjZzG6r47Jut4FS3DAKq9sINM37Eww8/HJqv\nv+TviYGcHcDhcPTovGlYR/ztfawXFxeTmZnJ+vXrWbRoUYdpjhw5Evp53rx5zJkzp0PRH4gKxxci\ngoKP9n6E1+xlmGUYJ/aewKE4mHHxjH5X9OFUk47/K3aQAGDQyCt8Byur1YpZ6NBpVBKO67Dogiha\nFbcQODXg0+uxK7oOR/vSwBR2U89TTz3F/Pnz8fv93H333cTHx7N8+XIA5s+fH3bA/kij0TB50mRG\njRjF8RPHSbGncOPEG0lJTum3zSR6vR5DXBzOlhaiu3gEYjAYpFFRGCYfmDJojR49GrVNR2KdB1u0\nARFUUf1arIog3qehqjWIW2PniiuuiHRUKUxhNfX0WogB1tTzZQPl62JzczMV27Yx1G7HZPj8KVqG\n7Gz2b9+OZuhQMgZgJ1sD5f3vTn/JX15ezuIf3UZM036M6RqEEkQgQJzqmK35aBBP7sU88+JrHebr\nL/l7YiBnhwg19UgDi91uJ3DhhZR++in25mYsnzX/WJKSUHJzSc/OjnREKYKqaqoYOTKHqtI2vJXH\n0dtAMSoIn8DXrEGTlEJqsgOfz4fBYPjqBUr9liz8g4zD4SD6kktobGzE4/Gg1elwZGRg8/sjHU2K\nMK/biyICZE0pwO3Kom5/Ob7WNgI6LTGFKSSmJ7L/0waam5s73aQpDSyy8A9CWq22wx+uVqvFLwv/\noJeQkECdq4Vhw5IxROnwm1JABwajARSoaaimTdHR0NAgC/8AJy/hkCQJgIyMDLxGKw21TdQ312OJ\njcJij0Jv0CHUICJoQJMWS+nR0khHlcIkC78kSQBYLBZyx0zgRIMPvyeIp9WDp9VDW7MbX5tCszWW\n3Pw8WgIttLS0RDquFAbZ1CNJUsjlky6n5GQJTeYAJp8XvVbBo9HgizWTnpqFVW/F7rDjcrmwdnFZ\nsDQwyMIvSVJIelo6ucm5GNOMNLc04/V5cViiiI+LJ+AJkGROwhRlGvC97A52sqlHkqQQm83GxPyJ\nGH1G4uxxpKelExsdi+pSSYpKIjM7k6A7KI/2Bzh5xC9JUgcjho7ArXVjspvw+/xoNBqsdisGowFX\nkwuH0YHdbo90TCkMsvBLktRBfHw8eS15HK49jMFuwGwxowZU6k/WYwlaGFkwstM8QggaGxtpqKhA\n9XoxWK04UlJC/XlJ/Yss/JIkdZKbnUu8I56KqgqcdU6MWiM5STnEx8d3esZuMBjkwK5dGGprSTab\nMej1tFZVcXDPHtrMZlKzsrDGxxMXH98vn1MxGMnCL0lSl+x2+xk16TQ3NhJdX0/aZ0/Ya2trw3ns\nGFkeDw1tbRAIIGpqKNXpyBg7Vn4L6AfkyV1JknrM6/Xia24m9bPnPKiqysmDB0kFUmNjGZaUhL+x\nkdTYWPKMRo5//DFerzeyoSVZ+CVJ6rnW1lZMfP5IVafTic3rxWI2A2DQ6TAGAri9XqJMJhKFoLa6\nOoKJJZCFX5KkXtTW2IjtNM+kiLFYaKmq6sNEUldk4ZckqcesViseCN3QJYLB0NE/gC8QwKvTYf7s\nw0CjKIhgMBJRpS+QhV+SpB4zGAwY7HYqP3uQkjk6mtbPHmwihOCEy4UjLQ3NZ4/0dLa2YvnsJLAU\nOfKqHkmSwhLtcHAsLg53bS0xej0nVZVAYyNOQJecTMpnhd7n91MjBFn98JnUg40s/JIkhUVRFIaN\nGUNTUxMNFRW0KQo7y8sZ4nCQmpiIz++nua2N6mCQ+FGjiIqKinTkQU8WfkmSwqYoCrGxscTGxgLg\n8Xioq6ri0Gcnci0ZGWQmJ2OxWCIZU/qMLPySJPU6k8l06hnO8jnO/ZI8uStJkjTIyMIvSZI0yIRd\n+IuLiykoKCAvL4+lS5d2Gr9q1SrGjBnDmDFjuOWWWzhw4EC4q5QkSZLCEHbhv+eee1i+fDkbNmxg\n2bJl1NXVdRifm5tLcXExu3btYubMmTzyyCPhrlKSJEkKQ1iF3+l0AlBUVERWVhYzZsxg69atHaaZ\nPHlyqDe+2bNns2nTpnBWKUmSJIUprMK/fft28vPzQ/8fMWIEW7Zs6Xb6FStWMGfOnHBWKUmSJIWp\nzy7n3LBhA88//zybN2/ucvwTTzwR+rmoqIiioqK+ihY2nU6HyWSKdIwek/kjS+aPnIGWvbi4mOLi\n4rCXo4j23pV6wOl0Mm3aNHbu3AnAXXfdxaxZs5g9e3aH6Xbv3s0NN9zAu+++y9ChQzuHUBQaPuvr\nYyAymUx4PuufZCCS+SNL5o+cgZwdwOFw0JMSHlZTT3vbfXFxMWVlZaxfv55JkyZ1mKa8vJwbb7yR\nVatWdVn0JUmSpL4VdlPPU089xfz58/H7/dx9993Ex8ezfPlyAObPn8/DDz9MQ0MDCxYsAECv17Nt\n27ZwVyudBb/fj9vtRlEUrFZrh25zJUkafMJq6um1ELKp55zw+/1UHD1Ky4kTWIJBgoqCx2QiPjeX\npC/0kNhf858pmT+yBnL+gZwdet7UI/vqOU8FAgEO7dpFXHMzOTExof7QvT4fx/bswe/3k56ZGeGU\nkiRFguyy4TxVW1ODvamJFIcjVPQBjAYDQ+LicB46JB96LUmDlCz856nG8nIS7fYux2m1WuKFoP5L\nd1lLkjQ4yMJ/nvK3tmIyGLodb9LpCLjdfZhIkqT+Qhb+85TObMbr83U73quq6MzmPkwkSVJ/IQv/\neSo2K4tal6vLccFgkLpgEEdcXB+nkiSpP5CF/zyVmJREo9VKTWNjh8u9/IEAR+rqsA0ZMqBuVZck\nqffIyznPUzqdjqHjxnH84EGqq6qwAqoQtBoMxI0cSUpaWqQjSpIUIbLwn8cMBgNDRo7EO3Qobrcb\njUZDltXa4fJOSZIGH1n4BwGj0YjRaIx0DEmS+gl56CdJkjTIyMIvSZI0yMjCL0mSNMjIwi9JkjTI\nyMIvSZI0yMjCL0mSNMjIyzml80prayvl5eW0trZis9nIzMzELPskkqQOZOGXzguqqvLRro/YXLKZ\ngDWAxqBBLVMxbTcxdcxUxowaIx85KUmfkYVfOi98vOtjig8Wkzw6GcMXuqN2t7h5f8/76HV6RhaM\njGBCSeo/ZBu/NOD5fD52HduFI9fRoegDmK1mbFk2dh7Yed4/cUxVVbxeL8FgMNJRpH5OHvFLA15b\nWxvNajNp1q47nrNGW6k+Xo3T6SQxMbGP050bfr+fAwcOcOTIEf6x7h+8t/09mgPNoAGH2cHXLv0a\n3/3Wd3E4HOj1eqKjo3G73dTW1+LxeYgyRhEfF09UVFSkN0WKAFn4pQFPDapo9Jpu2/C1Oi0qKqqq\n9nGy3qWqKpWVlRRvLubtzW9z1HmUA/sOELQGYRgQD2ig+kQ1r/xzBSUb1/Kz2+4lOSOD7fV1uGL1\nODLi0Bv0+Jv9HKg8wJDkIeRk5UR606Q+Jgu/NOCZjCYUn4Lf70ev13ca73V7MWvMA/b5Ay6Xiy2b\n/82/i9/laOVByn3VuBIFR2vKEAkCLgCsQAAIQpodEnIE3qoaVv/j7/zou3dhCzSgOjUomXFY7VYA\ngnFBDp44iNFgJDUlNZKbKPWxsNv4i4uLKSgoIC8vj6VLl3Y5zU9/+lNyc3MZP348+/fvD3eVktSB\n2b/OJvAAAAxgSURBVGwm3ZKOs9bZ5fiGkw1kO7KJiYnp42Thq66u5uVnlnNw85skWltIifMxJEkQ\nfbIag0dAOmACjKf+tdRCvAn+f3t3G9PUocdx/HdOWxBUwFouaHgQmIMiCjhL9aIdRiFqIyyDbeDU\nLfJC2YNzxmRZssRXS/aUsIVt4JKZvQD2Rpaod9kYZHfUzCsPEyNDFifIQB425LEIhdL+7wsnd9zy\nUFrltDv/T9LE0pOebwvn7+lpD4gawLZiCrfutuLKtf9gdYgaEQEBGG7rmP7DPKIoIig0CK1drTP+\nWA/7+3N78L/22ms4c+YMqqur8cknn+Du3bszbq+rq8OlS5fQ0NCAU6dO4dSpU+6ukrEZRFGEQWeA\nol+B7rZuTP75t4Yt4xbcuXkHAWMBSNWlet3HOW02G/793UUETg1hTaQaVnESE+IEBB+Cr2hFFABB\nBcAGQABgBYIsgEIFQAXQcsBitaB7qBuiQgFfHxX8xydwb/Te9Dp8fHwwKUxidHRUmgfJJOHW4B8e\nvr+HZTAYEBkZiYyMDNTW1s5Ypra2Fjk5OVCr1cjLy0NLS4s7q2RsVsHBwcjNyMXGlRsxeH0QnbWd\nGGkeQYomBc/seQaBgYFSJy5aR0cHyNwPlZ8IUSmCBAJEwDZlAxTAMiUQNALgwfAnQPXXLZoAIjtE\nUTH9JZUA2G3/96kfAbzHLzNuHeOvr69HXFzc9PX4+HhcuXIFRqNx+mt1dXU4dOjQ9PXg4GC0trYi\nJibGnVUz5iAwMBC7duxC2j/TYLVa4ePj49V/baz3j14E+ihgtd9/VaNUqiDaRYgQofBRQBSt8DMD\ng5MAfACIwLgdIAIEG4BhwE/lj/B/hAEgAALGiLDK53/vg9hsNghTAn+6R2Ye+Zu7ROSwNzHbS+4P\nPvhg+t8GgwEGg+FRpz00SqXSa984BLhfanP1P77+cYwF+IJsk1D4KRAzOoKReyO4ZxvFmHUM4yMW\njE4CZjWAIAAEKO4BGhsgjgFCChC5eh0SYhMwKUwAChE+SiUCQjTT6xi/Nw7tRi1WrFjx0Pu9gbe1\nm0wmmEwmt+9HIDde4w0PDyMtLQ2NjY0AgFdffRV79uyZscdfVFSEqakpvP766wCAmJgYtLa2zowQ\nBAwMDLiaIblly5bBYrFIneEy7pfWXP29vb2oPl+KdStU6J/sh5Wm0HX3Djp/v4M/xn9Hn3kATT0T\nGBMAqAEEABCBoJtA2F0gOSwep0+eRlBQEOqbGnGTRhGeuhkBQQGYsExgdHAUq5WrsUm7CUql6/uA\n3vz8e3M7AKjVapcO07m1x//guKnJZEJERASqqqpw+vTpGcvo9XqcPHkShw8fRmVlJbRarTurZEw2\nQkJCELA2CsN/tMOP/EDiOEKDQqGwKYFuoLNvHKKogjg4BnvPn8ft7YDoq8a+Zw8jQ5eCuwoFukdG\nsEq3DanLl6NvpA/mTjP8ff2xae0maDQaKBSK+UPY347bh3o+/PBDHD16FFarFcePH4dGo8GZM2cA\nAEePHkVKSgq2b9+OLVu2QK1Wo7S01O1oxuRAEATs3rUX3333Lwx2t2G5TYmJezbYRlXwVUbj4LMH\nEBmxDhO2CQwODWLlspVISUlBaGgoBEHA1NQUrFYrlErl9PkN0YiW+FExT+DWoZ6HFsGHeiTF/dJa\nqN9ut6OrqwutbTdhnZjAKnUwYmPjsHLlyiWsnJs3P//e3A5IdKiHMfboiaKI8PBwhIeHS53C/ia8\n97NujDHGXMKDnzHGZIYHP2OMyQwPfsYYkxke/IwxJjM8+BljTGZ48DPGmMzw4GeMMZnhwc8YYzLD\ng58xxmSGBz9jjMkMD37GGJMZHvyMMSYzPPgZY0xmePAzxpjM8OBnjDGZ4cHPGGMyw4OfMcZkhgc/\nY4zJDA9+xhiTGR78jDEmMy4PfrPZjKysLEREROCpp57C6OiowzKdnZ3YuXMnNmzYgLS0NJSXl7sV\nyxhjzH0uD/7i4mJERETg119/RVhYGEpKShyWUalUKCwsRHNzM86dO4e33noLZrPZrWBPZDKZpE5w\nC/dLi/ul483t7nB58NfV1SE/Px++vr44cuQIamtrHZYJDQ1FUlISAECj0WDDhg1oaGhwvdZDefsP\nD/dLi/ul483t7nB58NfX1yMuLg4AEBcXh7q6unmXv3XrFpqbm5GSkuLqKhljjD0EyvluTE9PR29v\nr8PX3377bRCR0ysxm8147rnnUFhYiOXLly++kjHG2MNDLnr66afp6tWrRETU0NBA2dnZsy43OTlJ\n6enpVFhYOOd9xcTEEAC+8IUvfOHLIi4xMTEuze959/jno9frcfbsWbz33ns4e/Ystm7d6rAMESE/\nPx8JCQk4ceLEnPd169YtVzMYY4wtksvH+AsKCtDR0YHY2Fh0dXXh2LFjAIDu7m4YjUYAwI8//ojS\n0lJ8//33SE5ORnJyMr799tuHU84YY8wlAtEiDtYzxhjzepKcueutJ3+ZTCZotVqsX78eRUVFsy7z\n5ptvIjo6Gk888QR++eWXJS6c30L9ZWVlSExMRGJiIg4cOICbN29KUDk3Z55/4P4nzpRKJb766qsl\nrJufM+319fXQ6XTQarVIS0tb2sAFLNQ/Pj6OF154AcnJyXjyySdx/vx5CSpnd+TIEYSEhGDjxo1z\nLuPJ2+1C/S5tty69M+Cmd999l1555RWyWCz08ssv0/vvv++wTE9PDzU2NhIRUV9fH0VFRdHIyMhS\np86QlJRENTU11N7eTrGxsdTX1zfj9traWkpNTaX+/n4qLy8no9EoUensFuq/fPkyDQ0NERHRF198\nQQcPHpQic04L9RMRTU1N0c6dO8loNNK5c+ckqJzdQu12u50SEhKoqqqKiGjWxyalhfqLi4upoKCA\niIja29spOjqa7Ha7FKkOTCYTXb16lRISEma93dO324X6XdluJdnj98aTv4aHhwEABoMBkZGRyMjI\ncOiura1FTk4O1Go18vLy0NLSIkXqrJzp37ZtGwIDAwEARqMRNTU1S945F2f6AaCoqAg5OTkIDg5e\n6sQ5OdPe0NCATZs2Yffu3QDu/8x7Cmf6AwMDYTabYbVaMTAwAH9/fwiCIEWugx07dmDVqlVz3u7J\n2y2wcL8r260kg98bT/76azMAxMfH48qVKzOWqaurQ3x8/PT14OBgtLa2LlnjfJzp/6vPPvsM+/fv\nX4o0pzjT39XVhfPnz6OgoAAAPGbwONNeWVkJQRCwY8cO7N+/H5WVlUudOSdn+vPy8mCz2aDRaLB9\n+3aUlZUtdabLPHm7XSxnt1uXP865EDme/EVEDo/NU4bPYlRXV6O0tBSXL1+WOmVRTpw4gXfeeQeC\nIMz6vfBkFosF165dQ3V1NcbGxpCeno6ff/4Zfn5+Uqc55eOPP4ZSqURPTw+amppgNBrx22+/QRQ9\n/xcAy3G7fWTflaqqKjQ1NTlcMjMzodPppl9OtbS0QKfTzXofVqsV2dnZOHToELKysh5VqlN0Ot2M\nN32am5sdzl3Q6/W4cePG9PW+vj5ER0cvWeN8nOkHgOvXr+PYsWO4cOECgoKCljJxXs70//TTT8jN\nzUVUVBQqKirw0ksv4cKFC0ud6sCZ9m3btmHv3r0IDQ1FdHQ0tmzZ4jG/R8aZfpPJhOeffx7+/v7Q\n6/VYu3atx304YC6evN06a7HbrST/HT84+Wt8fNztk7+WyoNjaCaTCe3t7aiqqoJer5+xjF6vR0VF\nBfr7+1FeXg6tVitF6qyc6e/o6EB2djbKysrw2GOPSZE5J2f629racPv2bdy+fRs5OTkoLi5GZmam\nFLkzONO+detW1NTUYGxsDAMDA2hsbERqaqoUuQ6c6d+1axcuXrwIu92OtrY2DAwMzDg85Mk8ebt1\nhkvb7UN523mRRkZGKDMzk8LDwykrK4vMZjMREXV1ddG+ffuIiOjSpUskCAIlJiZSUlISJSUl0Tff\nfCNF7rQffviB4uLiKCYmhj766CMiIiopKaGSkpLpZd544w1at24dbd68mW7cuCFV6qwW6s/Pzye1\nWj39fOt0OilzHTjz/D/w4osvUkVFxVInzsmZ9k8//ZS0Wi0ZDAb68ssvpUqd1UL9Q0NDdPz4cUpO\nTqaMjAz6+uuvpcydITc3l9asWUMqlYrCwsLo888/96rtdqF+V7ZbPoGLMcZkxvPfeWGMMfZQ8eBn\njDGZ4cHPGGMyw4OfMcZkhgc/Y4zJDA9+xhiTGR78jDEmMzz4GWNMZv4LXdEKzWz/ctUAAAAASUVO\nRK5CYII=\n", + "png": "iVBORw0KGgoAAAANSUhEUgAAAs0AAAHyCAYAAAAQi/NkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmclNWd7/HPU3uv1V29s3UDssuiAoIiglFB0RgdY8Rk\nYjTOGG8m0bnDmBhnJmoSJxJfLnESLon3ukVc7s2iuEaj0KIREQRll60bupvequm9urZz/+jpCm0v\nBfRSQH/fr1e/XnQ953nO7zk8XfWr85znHMsYYxARERERkR7ZEh2AiIiIiMjJTkmziIiIiEgcSppF\nREREROJQ0iwiIiIiEoeSZhERERGROJQ0i4iIiIjEoaRZRE5K3/rWt7DZbNx7772JDqXfvf766yxY\nsICCggJsNhs2m421a9cmOqxjFolEeOyxxzj77LPJyMiInUNf3XPPPdhsNm666aZ+iDKxTqdzEZF2\nSpplSFm9ejVXXXUVZ555JqmpqWRmZjJp0iSWLFnCAw88wIYNGxIdIps3b+aee+7hqaee6rXcI488\nwr333ktJSckgRXZiOhKqo3+SkpKYNGkSV155JS+//HKv+1uW1W+xlJSUcM899/Doo4/22zGP16uv\nvsqSJUsoLi6mqqqKvLw88vPzcbvdcfftSMRGjx7dr2WP1w9/+ENuv/12Nm/eTCAQID8/n/z8/H47\nfn/9n7/88svYbDa+8pWvxF5bsGBBt9fkF39eeumlfomhP6/f3oRCIXJzc7HZbDgcDg4dOjQo9YoM\nJY5EByAyGJqbm1m8eDHvv/9+7DWHo/3y3717N7t27eL111/H6/VSV1eXqDCB9qT5vvvuY8GCBdx4\n4409lnvkkUcoLS1l4cKFFBYWDmKEJ8br9ZKUlARAY2Mju3btYteuXbz66qssXryY1atXY7fbBzSG\n/fv3c99991FUVMTtt98+oHX15Oc//zkA3/zmN1m+fDm5ubnHfYzjScT6O2lrbW2Nfel49NFH+fa3\nv01ycnK/HDsnJ4eJEydSUFDQL8dbvXo1AFdeeWWXbR6Ph4yMjB737bhWT1R/n0s8r732GjU1NQBE\no1F+97vf8cMf/nBQ6hYZKtTTLEPCLbfcwvvvv09ycjL/+q//yiuvvEJtbS1NTU2UlZXx+uuv841v\nfIPU1NREh3pcBqsXqz88+uijlJeXU15eTk1NDS+++CKXXXYZAG+88QbLly8f8BhOhvbauXMnlmVx\nyy23nFDCnGj79u0jHA6TnJzMrbfe2m8JM8B3v/tdtm/fzs9+9rM+H8sYw2uvvYbNZmPJkiVdtl9/\n/fWx67G7n0svvbRP9ffnuRyLjjtTU6ZM6fS7iPQfJc1y2quqquKFF14AYMWKFTzwwANcfvnlpKWl\nAZCfn8+iRYt4+umn+fzzzxMZ6nEzxmCMSXQYx83tdnPttdfyyiuvxG7r/+IXvxjwek+GtqqtrQVg\n5MiRCY7kxHT0Zubm5uJyuRIcTc82bdpERUUFZ511Vr8OHTkZ1dbW8uqrr2JZFqtWrSI1NZVdu3bx\n0UcfJTo0kdOKkmY57W3cuBFo72Xs7jbt0TweT4/bIpEIv/rVr7j66qsZP348SUlJjBkzhquuuopV\nq1YRDoc7ld+6dSs/+clPuOCCCxg1ahRJSUmMHz+eq666ij/+8Y/d1mGz2bj55psBWLNmTZdxlmvX\nro2NVS0tLQVg4cKFncosXLiwy3HD4TAPP/wwX/7ylyksLCQzM5Pzzz+fH/zgBzQ2NnYbS8fYz6ef\nfprW1lZ++tOfsmTJErKzs8nMzOy1HY+VZVlce+21ANTX11NZWXnM+xpjWLlyZeycsrKyWLhwIXff\nfTfNzc1dyhcVFXHRRRcBcODAgS5te7w9c6FQiAceeIDFixdTUFAQ+/L185//vMu1cHR9HbGPHj06\n9tpgPyxWVFSEzWajuLiYpqYm7rvvPhYuXIjX62X69OnccccdtLS0dNrnySef7HR9fbENj26/9evX\nc9dddzFnzhyGDRtGcnIyU6ZM4dprr+W9997rMa7eHp7rqKe0tJT9+/ezbNkyLrjgApKTk7n66qu7\nlH/llVcAuOKKK06ojU6mc4nnueeeIxQKMXfuXKZOncpXv/pVoPfe5i9ekxs3buS2225j6tSpZGdn\ns2TJkl73P/oaqqys5K677mLevHlkZGQwb948fvzjHxMMBnvcf82aNXzlK19h3LhxJCUl4fP5mDBh\nAjfccAMvvvjicbeByKAwIqe5119/3ViWZWw2m3nttddO6Biff/65mTt3rrEsK3Ysr9drbDZb7LWS\nkpJO+2RlZcXKOp1Ok5qaGitrWZa54YYbutSTn59vMjIyjGVZxuVymYKCgk4/f/3rX82DDz5o8vPz\njd1uN5ZlmaysrE5l/u7v/q7TMffu3WvmzJnTKXaPxxP7fdSoUWbDhg1dYrnwwguNZVlmxYoV5pJL\nLjGWZRmHw2G8Xq/JzMw85rbrqOepp57qdvsLL7wQi+vjjz+OvX7jjTcay7LMvffe22Wf2tpac/nl\nl8eO7XA4TFJSUuz38ePHm82bN3faZ9asWbH/E7vd3qVtX3zxxWM+pwMHDphzzz03Vp/L5TJutzv2\n++zZs82BAwdi5Q8ePGjy8/NNQUFBrExubm6s7jvuuOOY6v3xj39sLMsyo0eP7lPZwsJCY7PZzMsv\nv2zOO++82Dk4nc5YfJMmTTJNTU2xfV544QWTn5/fYxt2tF9jY2Ona83tdpvk5OROr/3gBz/oNeab\nbrqpy7aOfd955x0zatQoY1mWSUpKMsnJyebqq6/uUn7mzJnGsqxO15Qxf7uuu6vji06Wc4mn41x/\n85vfGGOMWbt2bey9oa2trdt99u/f3+nvLj093ViWZVJSUjq9r333u981kUiky/4d19Af/vAHM3Xq\nVGNZlvF4PJ2uoXnz5pnq6uou+z744INd3o+Sk5Nj9ebn5x93G4gMBiXNctorKyuLJZjz5s0z5eXl\nx7V/MBg0kyZNiiU6zz//vPH7/cYYY5qamsy7775rrr/+elNWVtZpv2uuucb87//9v83BgwdNJBIx\nkUjErF+/3vzkJz+JJR6rVq3qUt+TTz5pLMsyCxcu7DWuwsJCY1mWWbt2bY9lQqGQmTx5srEsyyxa\ntMj89re/NWVlZaapqcmsWrXKLFq0yFiWZSZOnGiCwWCnfTuSi8zMTJOTk2P++Mc/mubmZmNMeyJ+\nrOIlzbfcckvsw7Ompib2em9J8ze/+c3YB/xTTz1lGhsbTTgcNsXFxWb06NHGsiwzZsyYLue0Zs2a\nY046e9PRNtnZ2Wb16tUmEAiYQCBgVq9eHfu/nTdvXrf7dpzrF79kHYv+TJo7rufx48ebd9991wSD\nQXPw4EFz5513mrS0NGNZllm+fHmXfeO1YUtLi7niiivMCy+8YCoqKowx7X9Da9asMXfffXfsC9sH\nH3zQY8w9JZod1+NZZ51lPv7441gy98XrsaKiwliWZYYNG9blOB3/d9/61re6jf9kO5d4tm3bFku6\n6+vrY693/B38v//3/7rdryNp7riOzzvvPLN161ZjjDGVlZXm3/7t32Lb/9f/+l9d9u+4hrKzs01B\nQYF56623TDAYjL23dHQSXH/99Z32q6ioiL0f33LLLWbDhg2xv9Pq6mrz+9//3txyyy3H1QYig0VJ\nswwJd9xxR+wDwOl0mgsuuMDcfffd5qWXXur0QdOd5cuXG8uyTFpamiktLe2XeH72s58Zy7LMhAkT\numx74okn+i1p/uUvf2ksyzLjxo0z4XC4y/ZgMGjy8/ONZVnmscce67StI7mw2Wxm48aNx3hmXfWW\nNAeDQePz+YxlWSYvL6/Ttp6S5k8//dTYbDZjs9nMH//4xy7HLCsrMykpKcayLPPII4902vbuu+/2\nOWl+5ZVXYj2tmzZt6rJ906ZNsR6zP/3pT122n0xJc0ZGRrc9gf/0T//U4/XZ1zb8h3/4h9iXuJ5i\n7i3RLCgoMC0tLb3W8fjjj8eSsi/quK6TkpJMXl5etz//8R//cdKcSzx33nmnsSzLfO1rX+u2/iuv\nvLLb/Y5Oms844wwTCAR6PPaoUaO6fAHtuIacTqfZuXNnl31fe+212N/Jtm3bYq93/P3k5eXFvoSL\nnCo0plmGhOXLl3Pffffh8XgIh8OsW7eO+++/n6985StkZWVx0UUX9Tgv64oVKwD453/+5357eOu2\n224jKSmJPXv2EAqF+uWY3fnlL38JwE9/+tNup3NzOp384z/+I0CPDw1deumlnH322X2OxRz1EF5N\nTQ3/9V//xXnnnReb4u/f//3fj+k4zz77LMYYpkyZ0mn+3Q7Dhg3jlltuAQZmBoFnnnkGgMsuu4yz\nzjqry/azzjorNnb+ZJ/B4Dvf+Q7Z2dldXu8Yt9wxbr4/LVu2DGgf838ibr/99rjTwR3LeOZAIEB1\ndXW3Pz2N8/+iwTiX3kQiEX73u98B7VMYHq3j9zfffJPq6upej/M//+f/7Hae8H/5l3/B5XJx8OBB\n/vKXv3S779VXX82ECRO6vH7ZZZcxY8YMotEoTz/9dOz1sWPHAu3TgH5x3LzIyU5JswwJTqeTf/u3\nf6OsrIxnn32Wb3zjG4wfPx6bzUYkEmHNmjVcffXVsYfwOgQCAUpKSrAsi8WLFx93vWvXruWrX/0q\n06ZNw+fzxR68ycrKorW1FWMM+/bt66/T7CQYDLJ//34Avve978UWoPjiz2OPPQbAjh07uj3OzJkz\n+yWem266KXb+ubm5fP/732fjxo1YlsU3vvENvvvd7x7Tcfbs2QPAhRde2GOZL33pSwAD0rYd9S9Y\nsCAh9fen6dOnd/t6x7m1tbXFTbi6Y4zh5Zdf5sorr2TKlCmkp6fH/u8nTpwIwOHDh2lrazuu41qW\nFfd6bGtr4+2338bj8XDJJZf0WO5b3/oWkUik25+HHnropDiXeN566y0qKirIy8vr8v40ZswY5s2b\nRygU4tlnn+01jp7+lnJzc2MJ8d69e7st09vf4fz587vsO3HiRGbNmkVzczMLFixgxYoVsfcpkZOd\nFjeRISUzM5OlS5eydOlSoD2pWbFiBU888QR+v58nn3ySCy+8MLaoyOeff44xBsuyGDNmzHHVdfPN\nN/Pkk08C7R9MlmWRkZERm6GjqqqKaDRKVVVVtz01fbV3716i0Sjwt2nCemJZVmwqtC/qr971oxc3\n8Xg8FBUVMXbsWL797W8zZ86cYz5OxwfwqFGjeizTsa2xsZGamppue1NP1PHU31OicbIYNmxYt6/7\nfL7Yv1tbW4/rmJFIhMWLF8d6Ji3Lwmaz4fP5YlPUHT58GGMMVVVVx319xSu/Zs2a2GJGfZ1DOtHn\nEk/HnYwbbrih22XMv/nNb7Ju3Tqefvpp7rjjjh6PE+9a/uyzz3r8Atjbvh3n98V9H3jgAZYuXcr2\n7dtjX5YLCgr48pe/zDe/+U3mzp3b4zFFEkk9zTKkjRkzhl/84hds3Lgx9qHz29/+NrbdOsHFMJ55\n5hmefPJJnE4nP//5z9m7dy/hcBi/3x9bPCEnJwcYuLmDO6Z7siyL8vLyHnvVOn56+lDsbRq+43H0\n4ib79u3jnXfe4be//e1xJcxHi/dFYKAlov6OZLanLzhH64ivv6YHPFb3338/f/nLX0hPT2fFihUc\nOnSIUChETU0N5eXlHDhwIFb2RK79eNdjxyqAfZ1qDhJ/Lr2pr6/nT3/6EwAPP/xwt0uBdwy92rx5\nM5999tkJ19XfFixYwO7du3nmmWe4/vrrKSgo4PDhw6xcuZLzzz+fu+66K9EhinRLSbMIUFhYGLuV\nu3Pnztjr48aNiyXOx9Nr2PHBfdddd3HnnXdSVFTUaXtLSwuVlZUDukLdhAkTYsfvGFJwOugYE/n2\n22/3WKakpASAtLS0fu1lPt76O8r2d91NTU00NTX1WrasrAyAM844o19jiKfj2n/kkUe49dZbuywj\nPdC97x2LfPRH0pzoc+nNiy++GBsS0nEnq7ufDr2Nr++4XrvTMa69pzttJ7pvWloaX//611m1ahVl\nZWVs3ryZv//7vwfavwT4/f4ejyuSKEqaRf5bx23G9PT02Gtut5uioiKMMbz++uvHfKyO8cHdPSgG\nsG7duh73dTqdALGhFSdazuPxMHr0aIwxvPnmm3FjPlWMGzcOgC1btvTY49pxO/2LSeuxtu2x1L9m\nzZoeexd7qr+vjk6A//rXv/ZYLhwOxxb1GeykeceOHViW1eO139uCIH21detWSkpKmDJlSq/DBo5V\nIs8lno4k+Ic//CF1dXU9/jz33HNA+wO0kUiky3GMMRQXF3dbR1VVFbt27cKyrB6vo572hb+1z7Fc\ng1OnTuWJJ55g5MiRBIPB2AOOIicTJc1y2tu/f3/cW5N+vz+WFH/xA/J//I//AbT3Nh3rbAJ5eXkA\n3a78FwqF+OEPfwh0f0u3Y8nfeLfgO8r1NkzgtttuA+Chhx7qtUcoEolw5MiRXus7WXz961/HZrMR\njUZ59dVXu2wvKyvj8ccfB9of9jpaR09hX3qxOmYlOHLkSLdJ06ZNm1i9ejWWZXWpv6/Gjx/PjBkz\nMMbwwAMP9Fhu1apVHDp0CLvdHltxcbDk5eVhjOn22m9sbOTee+8dsLr7axXADok8l97s2bOHDz74\nAMuyuP7660lPT+/x56qrriI5OZnKysoevzw//PDD3T7I+NBDDxEMBhk5cmTs4dYv+sMf/sDu3bu7\nvP7GG2+wefNm7HZ77BkRoNdVAiORSGys+LEMQRIZbEqa5bS3bds2pk+fzkUXXcRzzz3Hjh07aGtr\nIxwO8+GHH/Kf//mfXHjhhRw6dAiHw8H3vve9TvvffvvtjB8/nubmZmbOnMkLL7wQS7qamppYs2YN\n119/fex2OPxt9oEXXniBX/3qV5SXlxMOh9m0aRMXXnghe/bsISUlpdt4O3plduzYwcsvv0wgEOi2\nXEeP59NPP93jbeI77riDGTNm0NLSwjnnnMOTTz5JVVUV0P6A19atW3nooYc444wzepxy72Rz5pln\n8o1vfANo/1Lw1FNP0dTURCgUori4mHnz5tHa2sqYMWNiXxo6DB8+HLfbTVNTEytXrjzmqcWOdtll\nlzF//nyMMVxzzTWsXr2aQCBAa2srq1ev5tJLLwXg/PPPj7ts+/GyLItHH30UgHfeeYfLLruMLVu2\n0NbWhjGGgwcP8sADD/AP//APQPuMJT31kg7U0KCOa3/FihU8+eST+P1+2traKC4uZtasWQNSZ4f+\nTpoTeS696ZjCbcyYMUybNq3Xsh6Ph8svvxzoeYhGXV0dF198Mdu3b4891Pgf//EfLF++HMuy+NGP\nfoTD0f28ARkZGSxcuJC3336bYDBIc3Mzzz//fGwp769+9auxWUagvS3nzp3Lk08+yf79+wmHw0Qi\nET755BOWLVvG3r17sSwrtuS9yEllMCeFFkmEP//5z7FJ/I9euvXoZZc7FjtYsWJFt8fYtWuXmTVr\nVqfyHcvOdrdYRSAQiK3E1/HTscyy1+s1H3zwQa+Lk1x11VWd9issLDRFRUXmww8/jJU5ehGNjsUC\nCgsLu6zAVVJSYi6++OJOsXSs+HZ0/E8//XSn/ToWgehpJb9j1dviJr3pbUVAv99vlixZ0in+o5ex\n7m4Z7Q633357rJzD4TCFhYWmsLCwx5XTulNSUtJpGW2Hw9Fp+eBzzz230zLaR+socyKLm3T49a9/\n3en/0G63d1ne+atf/aqpq6vrdv9jWRinpzjjLW5SVVVl8vLyOsXW0TbDhw83u3bt6vHYx7IgSE/t\nVlNTY+x2u8nJyTHRaLTH8zqeZbQTdS69iUajpqioyFiWZe68885j2uf55583ltW+zHXHNXH0Mtqb\nNm0yXq/XWJbV5TqKt4z2H//4RzNt2jRjWe1LsXes9mdZlrngggs6rfJpjDGPPPJIp/ceh8PR6b3Y\nZrOZu++++7jbRWQwaMo5Oe1dcskllJSU8Prrr/P222+zZ88eysrKaGpqYuzYsYwYMYJ58+bxve99\nj9zc3G6PMX78eP7617/yy1/+kjVr1vDZZ59RVVXF2LFjmTZtGl/72tcYPnx4rLzb7eajjz7i3nvv\n5fXXX6ekpISJEycyd+5cbrrpJmbMmNHlQZ2jPfPMMzzwwAOsXr2a0tJSDh48CNDpFupZZ53FO++8\nw/3338+uXbtiM2R88aGbUaNG8dZbb/HMM8/wyiuvsGPHDvbt28ewYcMYMWIEc+bM4dprr+X888/v\ntF9v8R2vEzlOb/VnZmbyyiuvsHLlSl599VU+/fRTmpqamDZtGueddx4/+tGPepxubPny5YwcOZJV\nq1Z1atvm5uZjjm3UqFGsW7eOhx56iHfffZctW7ZgjGH69OksXLiQZcuWdbuYzNHn1he33XYbV155\nJb/4xS/Ytm0bu3btorGxkcmTJzNhwgRuuOGGWO9iT/UfSwzdlYm3X05ODlu3buXuu+9m7dq1VFRU\nMG3aNObOnct3vvOd2PXZ07F7O35v215//XWi0SiLFy+Oe4xjbf9EnUtv1q5dG5s7/pprrjmmfZYs\nWYLb7SYYDPLiiy/GZtXo0PFe8tvf/pb333+fiooKZs+ezXXXXddpaMUXGWPw+Xy89dZbPPzww6xb\nt46tW7dy5pln8qUvfYm777479hxBhxtuuIHU1FTefvttPvvsMyoqKggGg0ycOJGpU6fy/e9/v8t7\nkcjJwjKmb/Nd3Xzzzbz66qvk5uZ2O2702WefZfny5QBMmTKFe+65h/Hjx/elShERkU6uv/56Xnzx\nRZ5//nmuu+66RIdz0jtw4ABjxozBsqxuHxCMp6ioiNLSUtasWRNbxETkdNfnMc033XQTb7zxRo/b\nx4wZQ3FxMVu2bGHRokX85Cc/6WuVIiIiMeFwmDfffBOn03lCK3eKiByLPg/PuOCCCzpN8P5FR6/s\ns2TJEv793/+9r1WKiIjE1NXVcccdd5Cfn99pykgZWAM5z7zIyWhQxzT/5je/6fenyUVEZGjLycnh\nxz/+caLDGHL6OLpT5JQzaEnz22+/ze9+9zs++OCDLtsmTJjQ7TyPIiIiMnCMMX3qMb7wwgv7MRqR\nwTF27NgTWil3UJLmTz/9lO985zu88cYbZGRkdNm+e/duLZmZQA8++CDLli1LdBhDlto/cdT2iaX2\nTyy1f+Ko7RPL5/Od0H4DvrhJaWkpf/d3f8ezzz476Mu5ioiIiIj0hz73NC9dupS1a9dSU1PDyJEj\nuffeewmFQgDceuut3Hffffj9fr7zne8A4HQ6+eijj/parYiIiIjIoOlz0vzcc8/1uv3xxx/n8ccf\n72s1MoA0x2Ziqf0TR22fWGr/xFL7J47a/tTU58VN+iUIy9KY5gTyeDwEAoFEhzFkqf0TR22fWGr/\nxFL7J47aPrF8Pt8Jzf4y4GOaRUREREROdUqaRURERETiUNIsIiIiIhKHkmYRERERkTiUNIuIiIiI\nxKGkWUREREQkDiXNIiIiIiJxKGkWEREREYlDSbOIiIiISBxKmkVERERE4lDSLCIiIiISh5JmERER\nEZE4lDSLiIiIiMShpFlEREREJA4lzSIiIiIicShpFhERERGJQ0mziIiIiEgcSppFREREROJQ0iwi\nIiIiEoeSZhERERGROJQ0i4iIiIjEoaRZRERERCQOJc0iIiIiInEoaRYRERERiUNJs4iIiIhIHEqa\nRURERETiUNIsIiIiIhKHkmYRERERkTiUNIuIiIiIxKGkWUREREQkDiXNIiIiIiJxKGkWEREREYlD\nSbOIiIiISBxKmkVERERE4lDSLCIiIiISh5JmEREREZE4lDSLiIiIiMShpFlEREREJA4lzSIiIiIi\ncShpFhERERGJQ0mziIiIiEgcSppFREREROJQ0iwiIiIiEoeSZhERERGROJQ0i4iIiIjEoaRZRERE\nRCQOJc0iIiIiInEoaRYRERERiUNJs4iIiIhIHEqaRURERETiUNIsIiIiIhKHkmYRERERkTiUNIuI\niIiIxOFIdAAiIiKnmvr6emrraomaKN5ULz6fD7vdnuiwRGQA9amn+eabbyYvL4+pU6f2WOauu+5i\nzJgxnHPOOezcubMv1YmIiCRUMBhk46cb2bBnA6WBUsqCZWwp28IHn3yA3++nra2NaDSa6DBFZAD0\nKWm+6aabeOONN3rc/tFHH/Hee+/x8ccfs2zZMpYtW9aX6kRkiAuFQlRUVLB77272HdhHQ0NDokOS\nIcQYw2c7P6PR2Uj2yGwyfBl4M72keFM41HSIp159inc2vEPxx8XsL9lPKBRKdMgi0o/6lDRfcMEF\nZGZm9rh9/fr1XHvttfh8PpYuXcqOHTv6Up2IDGG1tbWs+2Qd26u2UxmtpDRQyke7P2Lzts2Ew+FE\nhydDQH19Pf6Qn4ysjNhrzU3NbPt8G4HkAKljUzFphrQRaexv2M+mbZuUOIucRgb0QcCPPvqIyZMn\nx37Pyclh7969A1mliJyGGhsb2bx3MynDUsgqyCLNm0aGL4PsUdn4o352fK4v5DLwqv3VuFJdsd+N\nMew9sBdXtouU9BRS0lOoqqvC7rDjy/PRbG+m9FBpAiMWkf40oA8CGmMwxnR6zbKsbss++OCDsX/P\nnz+f+fPnD2RochSHw4HH40l0GEOW2j++xuZGzpxyJm6Pu8u2oqwiWutbsdlsuFyubvbumdo+sU61\n9h+WPwwvXlzu9ussGAzimuTCk9Z+DsYYQtkhCrIKACj0FdJW34bb7e7xsy+RTrX2P52o7QdXcXEx\nxcXFfT7OgCbN5557Ltu3b2fRokUAVFdXM2bMmG7LfnG8cyAQGMjQ5Cgej0ftnUBq/94ZY9jw2QYy\nR2diNXefePir/ERbowwfPvy4jq22T6xTrf0bGxrZXrUdX74PAH+Nn721e/HmeAFoaW4hLZJGm60t\nto+/1I832UtSUlJCYu7Nqdb+pxO1/eCaPXs2s2fPjv1+//33n9BxBnR4xrnnnsvvf/97amtrWbVq\nFZMmTRrI6kTkNGSMwWB67amz7BaRaGQQo5KhKDs7G3ubnWBbEAC73Y6JtN9NjUajBBoC5Gbldt4p\niqaiEzmWRlBrAAAgAElEQVRN9KmneenSpaxdu5aamhpGjhzJvffeG3vo4dZbb2X27NnMmzePmTNn\n4vP5+N3vftcvQYvI0GGz2fAme2ltaSUpufveukhrhLT8tEGOTIYah8PBtDOm8cnnn2BPt5OUkoQt\naKOxsZFQU4hRvlGkpf3tOmxqaCI7Lfu4hw2JyMnJMl8cdJyIICwLv9+f6DCGLN0mSiy1f3zV1dVs\nKtlE7sjcLj3Orc2tGL9h7tlzj3vcqNo+sU7V9m9ubqa8spzymnIOVx7mSOgI4yePJ9P3t9mkAq0B\nmg83M2vSLNLT0xMYbc9O1fY/HajtE8vn83V55u5YaEVAETnp5eTkMKZhDPsP7ifFl0JSchLRSJTG\nI43YWmycPfHsk/JBKzk9paSkMG7MOMaNGQfAobJDfF72ObWBWrCDCRmSTBLnTDjnpE2YReT4KWkW\nkVPCuLHjyPJnUVJRQn1NPQ6bg9G5o8kfm6+n0CWhRgwfQX5ePkeOHCESieB2u/F6vfoiJ3KaUdIs\nIqcMn8+Hz+dLdBgiXTgcDrKzsxMdhogMoAGdPUNERERE5HSgpFlEREREJA4lzSIiIiIicShpFhER\nERGJQ0mziIiIiEgcSppFREREROJQ0iwiIiIiEoeSZhERERGROJQ0i4iIiIjEoaRZRERERCQOJc0i\nIiIiInEoaRYRERERiUNJs4iIiIhIHEqaRURERETiUNIsIiIiIhKHkmYRERERkTiUNIuIiIiIxKGk\nWUREREQkDiXNIiIiIiJxKGkWEREREYlDSbOIiIiISBxKmkVERERE4lDSLCIiIiISh5JmEREREZE4\nlDSLiIiIiMShpFlEREREJA4lzSIiIiIicShpFhERERGJQ0mziIiIiEgcSppFREREROJQ0iwiIiIi\nEoeSZhERERGROJQ0i4iIiIjE4Uh0ACIicvJra2ujurKSpsOHMdEoSVlZZBcUkJqamujQREQGhZJm\nERHpVUNDA6WbNpEbjTI2NRXLZqOxvJxDpaVkTJpE/rBhiQ5RRGTAKWkWEZEehcNhSrds4Qy3m5Sk\npNjrbpeLjEiEXdu3k5KWRlpaWgKjFBEZeBrTLCIiPfL7/XiDwU4JcweH3U6+00lNWVkCIhMRGVxK\nmkVEpEfNtbVkuN09bvemptJcXT2IEYmIJIaSZhER6ZFls2GM6XG7MQbLpo8SETn96Z1ORER6lJad\nTV0g0OP2I01NpOXnD2JEIiKJoaRZRER6lJmZSVNqKkeamrpsCwSDVESjZBcUJCAyEZHBpdkzRESk\nRzabjdHTp7N/yxbqamrweTzYbDYaWlupsdkYftZZJCcnJzpMEZEBp6RZRER6lZyczMTZs/H7/VRV\nVbUvblJYyPicHFwuV6LDExEZFEqaRUQkLrvdTk5ODjk5OYkORUQkITSmWUREREQkDiXNIiIiIiJx\nKGkWEREREYlDSbOIiIiISBxKmkVERERE4lDSLCIiIiISh5JmEREREZE4lDSLiIiIiMTR56S5uLiY\nSZMmMW7cOB577LEu21tbW7nxxhs566yzuPDCC3nppZf6WqWIiJzkAoEAB0oP8P7G93nv4/fYumsr\n9fX1iQ5LROSE9XlFwNtvv52VK1dSWFjIokWLWLp0KdnZ2bHtTz31FCkpKXzyySeUlJRw0UUX8eUv\nfxnLsvpatYiInIQaGhrYuHMjpEBqXio2m4265jrKd5UzPn88RaOKEh2iiMhx61NPc0evwfz58yks\nLOTSSy9l/fr1ncp4vV4aGxsJhUL4/X6Sk5OVMIuInKYikQhbdm/Bk+shMycTp8uJ3WEnzZtG9qhs\nPq/8nCNHjiQ6TBGR49anpHnDhg1MnDgx9vvkyZP58MMPO5VZunQpkUiE7Oxs5s2bx7PPPtuXKkVE\n5CTm9/tps7eRlJzUZZvNZiMpM4nSitIERCYi0jd9Hp4Rz3/913/hcDioqKjgs88+Y8mSJZSUlGCz\ndc7XH3zwwdi/58+fz/z58wc6NPlvDocDj8eT6DCGLLV/4qjt+19KagpTx0/F7XF3XyALAkcCeDwe\ntX+Cqf0TR20/uIqLiykuLu7zcSxjjDnRnevr61mwYAGffPIJAN/73vdYvHgxS5YsiZW57rrr+Pa3\nv82iRYsAOPfcc3nqqac69VBbloXf7z/RMKSPPB4PgUAg0WEMWWr/xFHb9799B/ZxsO0g3kxvt9sj\nkQjNh5qZP2u+2j/B1P6Jo7ZPLJ/Px4mkv30anuH1tr8pFhcXc+DAAd566y3OPffcTmW+9KUvsXr1\naqLRKPv27cPv93dKmEVE5PThy/ARagr1uL2pvokCX8EgRiQi0j/6PDzjkUce4dZbbyUUCvH973+f\n7OxsVq5cCcCtt97K9ddfz/bt25k5cyY5OTk8+uijfQ5aREROTl6vlwxnBvX+ery+zr3NwbYgkYYI\n+ZPyaW1txel0JihKEZHj16fhGf0WhIZnJJRuEyWW2j9x1PYDo62tjU93fkp9pB5nihO73U5bcxu0\nQnZKNkcCR4hYESaNnkRFRQVjR46N3bmUwaPrP3HU9ol1osMzBvxBQBERGVrcbjczp83kyJEj1Phr\nCEfDpGWlUVFTQY2pIWN4BnaHnaSMJFrrW/lo50fMGDODnJycRIcuItIjJc0iItLvLMsiMzOTzMxM\nAMrKyqinnuz87E7lUlJTcLlcbNu/jQt8F2C32xMRrohIXH1eRltERCSeA4cPkJ6d3u02p8tJxBXR\nMD0ROakpaRYRkQEViUQIhAK4XK5utwdaAwTCAY7Ua6VAETl5aXiGiIgMKJvNhs2yEYlEOg2/CLYF\n2b59Ow1tDdRW11LlqaKhuYFJ4yaRnJycwIhFRLpST7OIiAwoy7IYmTOShrqG2GuN9Y1U+auoCFRQ\n0VZBXbSOQFaA9w68x+/f/D319fUJjFhEpCslzSIiMuBGDBuBrdlGU2MTxhj2le4jaILUheuIOCIU\nFhWSVZBF3rg8apNqebP4TSKRSKLDFhGJUdIsIiIDzuPxMHPyTNxNbg7uPEhZZRmNrY3YLTsF3gI8\nHg879+xkw+YNHKg5wHs73mP37t2JDltEJEZJs4iIDIqUlBRmTZ/F1FFTyXBnkJGWwYSiCQTbgmza\nuYnSxlJaU1sJpgeptFWy8vcr2b9/f6LDFhEBlDSLHBdjDC0tLbS0tJzQakIi0r4al9vhbl8VrTXA\n7kO7MV5Del46SalJuFPc+LJ9eEZ6eGndSxrfLCInBc2eIXIMjDEcLi/Hv38/rmAQYwwhjwdfURH5\nw4ZhWVaiQxQ5ZaSnp+N1eAkFQ1RUVdDmaCMjLSO2PdgUxOVwkZWZhcGwbec2zjv3vARGLCKinmaR\nY3Lg889p27aNCS4XE30+JmVlMcHppG3bNkr27El0eCKnFMuymDN9Dm31bRyuOow71R3bFmwOYhoM\nKa4UfD4f6dnp7Cvfl8BoRUTaqadZJI6GhgbCJSVMyMnp1KPsdrkYk5PDrgMHaMjLIz29+9XORKSr\nESNGkHIkhZa9LQSbg5AFJmxw29ykJaeRnZRNakYqTY1NoBs5InISUE+zSBy15eXkut3dDsGwLItc\nl4va8vIERCZyaivIL+C6C68jpTmFtHAaPqcPn9vH8MzhDC8ajmVZtNS2MDJ/ZKJDFRFRT7NIPMGm\nJpLc7h63e9xugi0tgxiRyOlj3tx57KrYhWO4g1RvKi63C5u9vT+nwd+As9XJlFlTEhyliIh6mkXi\nsrvdBEOhHrcHw2EcLtcgRiRy+khJSeGahddgKgy15bU0NDTQUNdA5b5KIpUR5k2eh8vloqS0hL0H\n9lJdXa1FT0QkIdTTLBKHb/hwag4fxpua2u32mtZWMidPHuSoRE4fI0aM4MYv38iO3TvYV7YPLBif\nPZ5xheOo8lfx0e6PsDwWoVCIYEWQVFI5e9LZZGRkxD+4iEg/UdIsEkdGRgZVWVlU1NWRn5ERG9ts\njKGiro5gTg6ZmZkJjlLk1Jaamsqss2cx6+xZGGOwLIvPdnxGbbSWaFKUsuoyQlYILAi3hClbW8aV\nF16pxFlEBo2SZpE4bDYbZ0ybRunnn7O1vJz0/06a64GkggLGjhuneZpF+pFlWTQ2NlLZVEnQFaS0\ntpT0rHRSnCkARKNRKksreef9d7hq8VXY7fZejxcOh6mvryccDuN2u/F6vfqbFZHjpqRZ5Bg4HA7G\nTJpEYPRompubAchJTcXdywOCInLi6uvrCTvCHKo9REZ+Bjbb3x7Bsdls5I3KY/8n+6muriY/P7/H\n45SVl/F52eeEnWEsu4UJGZJMElPGTlEvtYgcFyXN0kVDQwOHDh+ipr4Gy7LI9+UzLG8YKSkpiQ4t\n4TweDx6PJ9FhiJz2wtEwDY0N2Dy2TglzB5vNhifVw4GKAz0mzWXlZWwr30bW8Czsjr/1RgdaA2zc\ntZFZk2ZpfnUROWZKmqWTsvIydhzagSvDRcqIFDBQ3lDOwW0HmXHGDHw+X6JDFJEhIC0ljdbGVux5\n3Q+9CLQE8KZ5CYQC3W6PRCLsKdtD1vAsItEI1YerqaqrIhwNk+pJJdWdyr6D+5gxZcZAnoaInEY0\n5ZzENDY2suPQDjJHZJKekY7dbsfusOP1eUkdlsrmPZsJBoOJDlNEhoDMzExSrVRaG1u7bDPGUHWg\ninBLmEZ/Y7dT0NXX1xNyhGgLtrFtzzYONh3E4XOQnJdMq7uV0oZSPv38U72nicgxU0+zxFRUVuDy\nurA77ETCEVoDrRhjSEpKwuVyYZIM1dXVDB8+PNGhishpzmazcf7Z57PqrVXUu+tJ86Zhs9uoKa9h\n/dr11LfWgxsyXBls3LWRxXMWM+fcObH9I5EIls1iT+kebOk2vMne2Lak5CQ8SR5KKkqorKxk5Eit\nOCgi8Slplpjahlrc2W62b9vOzo83Ei47DIAtL5szzj6LsWPG4m/0MxwlzSIy8PLz81l0ziI27N1A\nw5EGAq0B3v/wfaIjouSMyMGFi9zMXJoamnhi7RME2gIsmL8AALfbTdORJgJWgIzkDBoaGigtL+Ww\nv/19LSsti4xIBmU1ZUqaReSYKGmWGLvdzl/XvU/jBx8y05tC3ohsAGqPNLHllVcpmzyVqxZek+Ao\nRWQomTxpMl6vl30V+3h33buEckJk5mUSbgljJVlUNFRAFBgJz73zHDPPnklqairp6enY2mwEnUEO\nVx7mk88/gRQwTkM4EKa6pJqMaAY+u49Z02bFnbZORERJs/xNEA7/pZgl44Zji0RpbWzBsllkpaVw\nUUYqr3z4MY0zLkl0lCIyhFiWxYjhI8jJzuH3b/6esVPG0hhqxJHhwHXU8vXhcJhSq5R169axePFi\nAMYXjmfbR9vYWreVoCPI3o178fv9hINh7G128nPyaSlr4YoFV1BQUJCoUxSRU4QeBJSY0r17GRuM\nUltZRU1jDU2mkYZQA5U1h6kpr2aKO4Xd27YkOkwRGYLC4TARW4SIPYI9xY7D7qCpqYmKqgoOVR6i\nxl+DSTVs2b0FYwwAw4cPxxP20FjWyIZXN3Co6hCtrfU46pqhpYG9Fbv5YPMHvPzqywk+OxE5FShp\nlpi6gwfITElqvypsgGVh2S1wQigcIj8jnZZDZYkOU0SGILfbDWFoaG7A4XBQ7a+mvq0eR7IDT7oH\nW7KN5sZmDh85jN/vB9qX5g6HwuzbuY9mewPDD4aYdwCuqIcr62FBGaRVNbN85fLEnpyInBKUNEtM\nIBgCj0VWVhbOqJNwYwhbq4UvJYsRRSNpbGvGWLpkRGTwORwOZo6eif+gnyNNR4g6o7iT3e1f7IFo\nKIq71U3m6Ez2HdgX289pnFQdqWJUiWFBFGblQ2E+FObCrDy40g0pVXWsXr06UacmIqcIZUASY8/P\nZk9VLbWNtUTcUZzpLsLOMEca6wgF26hoaiZr3IREhykiQ9QlCy/BcchB5d5KHI6/PZLT1tBG3ZY6\npoyeQm5+LocbDhMOhwFIspKw6kNMi8CwbLCHgTaIhMBEwJcG5zrhRz/6UYLOSkROFXoQUID2xQLC\njjB7kl049h3Cm+bC5XKRnuHFkWxjx959HPT4mDt9aqJDFZEhavjw4Xz90q/zxF+eoMZfgy3VRjQU\nxRP0cNbYs5gwYwJWvUVSehKtra2kpaUxevRoMhphZDYQbJ9oI6kRUtrAZiAchbYIrK3U0DMR6Z2S\nZgGgurqanft3UjECKva0MbKunly7ha38MAGSaBk5krFzziU/Nz/RoYrIEDb77NnsrduL8RqCbUEc\nTgd5I/IACNQGmDR6EqH6EDZb+43UhQsX4giBw0A0Ahl1kOoAUgEHuAxk2yC/DS699FL+/Oc/J+7k\nROSkpqRZAFj959UcCB2gJb0F69x0drals686iMNyYktKY8aYSdiNHZ/Pl+hQRWQIy83NZUrhFOqi\ndTS0NWA5LVprW0lzpTF5zGScLidOu5OUlBSgfSx0k2WnsTFCehhSHED6UQe0oN4N7hzYvudjKioq\nNP2ciHRLSbPQ1tbGMy8/Q2lKKW2lbRinwZXsIiM3g2EjhmFrs7Fn9x5mzpupBQBEJKHsdjtTxkxh\n++HtFBUVEYlEsNvteJI8RMIRastqOavorE77XPWVG9jxh2cYDViZgAH++62suQ32t0F4BHir4cyZ\nZ1JbVjvYpyUipwA9CCi88+47bPdvp8ndRGREhGh2lDZHG5Ullez56x4ibRGcKU7SU9LjH0xEZICN\nGD6C8TnjaalsIdAcoC3QRu3hWuoP1jNl+BRycnI6lX/00Uf5OAiftEBVCFoj0BKCQ0dghx+iDphg\nwSgnpLsM02dMT9CZicjJTD3NQ9z69evZdnAb4VFh7Fl2oslRLCwIgi3NRsuRFvxH/CSHkynI1i1L\nETk5FI0qoiCvgNraWoLhIB6vp326TKez2/Jzz1/Ahs1rqAlDVhSiIXBEwO4D9zAwQbA5oSgVDjcc\n5IorruCVV14Z5LMSkZOZepqHsEgkwnd/+F0iGRFwgnEaTNAQJUo0KUrUihJxRqjYU0FaKI0xY8Yk\nOmQRkRi3282wYcMoGlVEfn5+jwkzwPPPP09NBPzZsHcCNOSDYyLYRoLVBq0t0BSCaBr40mHDtg+4\n//77B/FsRORkp6R5CLv9n29nX2gfeIE0iAajRGwRTMhgAoaoiUIEQnUhzp14Li6XK9Ehi4icEJfL\nxaJLruFQFYQbIcMGVhQiTdDYBiWtkBaGUSlwRjZMzIZfP/EgK1asSHToInKS0PCMIeqen97D/93y\nf2E47VdBDuAHQhC1R7Fhw7JbhOvCeOo9XH3F1QmNV0Skrx5//HHyi15hZ3kQjwvcUQiGoKkNCg1k\njoCgaV/0JC8CThf8YvndjBgxgiuvvDLR4YtIgqmneQh6+523ef7953Gc4cCWaYMgf0ucHUAAotVR\nqAVTZ5g/cX6XB2tERE5Fmz/cTLgK/Eeg5QgEA5Brh8zh0BqEtCYoDLb3J4x1wvkO+Jdbb+T//J//\nk+jQRSTBlDQPMfX19fzhnT8Q9UVx5bjaxwCGgTrar4Y0sHItyINIOELSkSTuvvPuBEctItI/8vPz\n+dXyX1HbBMaCqBN8qdAWAl8Q8jwQqYOUJiiKwpQ0uDgFHvvpMm688cZEhy8iCaSkeYjZs28Pzc5m\nHB4HyanJOF1O7C47Vo0FJYAfjN/AIbBttfGDr/2A8ePHJzpsEZF+s3TpUqafM59yP0RbweZoH9+c\n6YDWKvBEISMHnKngSAVvJkwYAR9tXs11X78u0eGLSIIoaR5imlqaSPelY8eOwzhwZbhw4MCZ7MSO\nHWpoT573wnUzr+Of/umfEh2yiEi/+9Of/oTXN45d9VBaBw2N4A9DMAqOXNo/HcNABMIuSE2B7AIo\n3vw2yx9ZTjgcTvAZiMhgU9I8xKSlpDF82HBSHanYmmykOlOxJ9lJTk0myZVEsicZZ6uTKWlTePD+\nBxMdrojIgFm/fj3j8ydzoBHq7dBsQYrnvzcGgbb2BwVbU8DYwZYNqWnwm9d+w88e/hmHDx9OZPgi\nMsiUNA8xY0ePxRPwcP6c8zE1BmrBFXWR5k4jLSkNu9/OsJZh/PqnvyYpKSnR4YqIDKh1xesoHHYO\nhw9CWwVYAaAZaIVgG1QnA8lQb4HN1b4ASjAjyLuV73LXw3exZcuWBJ+BiAwWJc1DjNfrZc74OeQl\n5XHxeRfja/VhjhhCu0KEPwszNjCWpx54iqlTpyY6VBGRQfHn19/iwsv+ns1+KK+F+haoiUBFMoR8\n0BIGfxJgoMUOnuEefBN8hIvCPPPOM+zbvy/RpyAig0DzNA9Bs8+ZTVJSEuu3rifnvBzGFYzjsomX\nMWPsDK654hpSUlISHaKIyKB69NFHWTFxIit/fjdTbZCUAVEbNISgNhnIgPoKaPPYyc5JxpPkIcWZ\nQqgxxAeffsCokaNwOPSRKnI601/4EGSz2Zh+5nSmTJxCdXU1WVlZTB8zndTU1ESHJiKSMLfddhvN\nzc38+jf3M8wD9hwgvX3IRv0hONQKGVMzSHGmkOnLJNIQISk9iepANXV1dZrPXuQ0p6R5CHM4HBQU\nFODxeAgEAokOR0Qk4ZYtW8aoUaNYdu8/Y6trxZ4MLRZEMh1kTPeSWZDJyPyR2Cwbdpsdh92Bw+4g\nGAwmOnQRGWAa0ywiInKU6667js8+2M71V/0jSZnDSCrKYMScEYwcNZLxI8eTm5dL8EiwfcYhRzKZ\nyZm43e5OxwiHw5qWTuQ0o55mERGRL/B6vfz8Jz/n8nWX89j/fYxwcpjcwlwsYxGuCeP1ePHgIc2Z\nRm5yLpmZmQD4/X72lu7lYOVBAm0BMpIzmDJuCoWFhQk+IxHpKyXNIiIiPZg/bz45WTn8+vlf07Cn\ngYz8DDweDynRFLxOLyM8I5g+bjp2u52Dhw6ycc9GDjccxpZmw55up66ljq3rtjJt7zQunn+xHhYU\nOYVZxhiT8CAsC7/fn+gwhiyNaU4stX/iqO0T61Rq/8bGRtatX8fu8t04PA58aT6GZQ5jyhlTyM7O\nprm5mbWb1nKo5RDJecm4PK7YvtFolEM7DjGvcB5zZs5J4Fl0diq1/+lGbZ9YPp+PE0l/9ZVXREQk\njrS0NC67+DIuaruItrY2bDZbpxmHDlcdpi5Qhy3N1ilhhvYZi3wjfews38mUximkpaUNdvgi0g/6\n/CBgcXExkyZNYty4cTz22GPdltmwYQOzZs1i0qRJLFiwoK9VioiIJITb7SY9Pb3LFJ31zfU0BhpJ\n9XY/dafL4yJoD+Kv011VkVNVn3uab7/9dlauXElhYSGLFi1i6dKlZGdnx7YbY7j55pt5+OGHufji\ni6mpqelrlSIiIicVp8NJMBTEZu++LyoajmJ32AlFQoMcmYj0lz71NNfX1wMwf/58CgsLufTSS1m/\nfn2nMh9//DHTpk3j4osvBuiUUIuIiJwOCrILcEQdBJq7H6caaA7gdXvxpnoHOTIR6S99Spo3bNjA\nxIkTY79PnjyZDz/8sFOZN998E8uyuOCCC7jyyit58803+1KliIjIScfn8zEuZxw1B2u6PGDU1NCE\no81BVlIWPp+v07ZwOExFRQUbPt3A+xvfZ8v2Lfj9/hN6SElEBtaAPwgYCATYvHkzb7/9Ni0tLVxy\nySVs3bqVpKSkTuUefPDB2L/nz5/P/PnzBzo0+W8OhwOPx5PoMIYstX/iqO0T63Rr/8svvpxx+8dR\n21qLM9WJw+EgGo5iS7WRXpTOiNwRnc43EolQe6QWkmH0hNHYbDYi4Qitra04W5zkZA3sstynW/uf\nStT2g6u4uJji4uI+H6dPSfOsWbP413/919jv27ZtY/HixZ3KzJ07l7a2NvLz8wGYOXMmxcXFLFq0\nqFO5ZcuWdfpdU7EMHk19k1hq/8RR2yfW6dj+RSOK4ADs3LGThtYGkpOSGTdyHBkZGUDnz7Yt27dw\nxHYEr88LbZ2Ps/3AdsZljSMvNw+n0zkg8zufju1/qlDbD67Zs2cze/bs2O/333//CR2nT3+FXm/7\n2Kzi4mJGjRrFW2+9xY9//ONOZebMmcO9995LS0sLgUCATz75hPPPP78v1YqIiJy0ioqKKCoqwhiD\nZVndlmlubqa6qZrsoq7P+bS2tuJv9fNS8UucOfFMrKjFiKwRFI4s7LJct4gMnj5/dX3kkUe49dZb\nCYVCfP/73yc7O5uVK1cCcOutt5KVlcVNN93EzJkzycnJ4b777usyVY+IiMjppqeEGaClpQXL03V7\nS0sLO/bvwEqxSMpPIjUvFafLSZm/jOqt1Zwz5Rzd1hdJEK0IKLpNlGBq/8RR2yfWUG7/mpoaPi3/\nFF9+5wcDt3++nWBSkOTkZI6UHmHGpBm43O2LpdT768m15TJp/KR+iWEot3+iBAIB6vx+snw+6o4c\nwZeVhdPpTHRYQ86JrgjY58VNRERE5PikpaVBgE4f3C0tLTQFm0hOTiYYCJLsTI4lzADpmemU15UT\nDAYTEbL0gTGG0r172bduHfadO3HV1xPZto1d771HVWVlosOTY6SkWUREZJC53W6GZw7HX/m3u6zh\nUBicEI1EaappYnj+8E77WJYFTpQ0n4LKSkow+/ZxZlYWBT4fyW43I7OymJyeTt2WLbrbfopQ0iwi\nIpIAZ4w5g1xXLjWlNdTX1RNoDdBU20RDWQOFWYVkZmV22ceEDXa7PQHRyokKh8Mc2b+fQp+vyzh3\np8PBqLQ0KvftS1B0cjwGfJ5mERER6cputzN14lQKGwqprKkkYALUO+rJG53H/2/v3qPjqO8873+q\n+q5utaTWXViW5Qu2bOMLYASBOGaSGDLmMhO8CTCTSZ5wzhhIuMxO5mRzls3uJDu7ZIfzhHmcBJxs\n8iTPYLJnFpiBzDyBsScJyhPwBbCNsY2vsiXLki2ppVa3+qK+1POHBiUeX8pIlkpqv1/ncHC7SlXf\n+qrb9VHpV78Kl4XPWT+ZSKrCX3HOcw4wvQ0NDSmcz1/wh51QICCjv1/pdJqbPKc5QjMAAA4Kh8MK\nhwj3CLAAACAASURBVEdDcm2kVruP71YgEJDH+9sbxDLpjJK9SS1ZtMSpMjFOhUJBbvPiv9h3GYYK\nhcIUVYTxIjQDADBN1NTUaLm1XAc7DyrmislwG7KylvwFv667+rqx5yNg5vD7/YpeJBDn8nllXC7m\n4J4BCM0AAEwjtbW1qqqqUiwWUy6Xk9frVVlZ2UXnfcb0FQqFVKio0EAioYrzPKfi9OCgyubOZaz6\nDMCNgAAATDMul0uRSEQ1NTUqLy8nMM9ws1ta1CmpZ2BAuXxekpQeGVFHX58GKypU39jobIG4JFxp\nBgAAmEQlJSWav2qVeru7ta+jQ7NTKXXmcoosXqwFtbVcZZ4hCM0AAACTzOfzadacOZo1Z478fr/C\n9fVOl4QPidAMAADOMTg4qJM9J9U31CfTMNVQ2aCGugaVlJQ4XRrgCMY0AwCAs3R0dmjHoR0acA0o\nPDus4FVBncyc1Lb3tmlwcNDp8gBHEJoBAMCYWCymgz0HVTW7SqVlpTJNUy63S+WV5QrWBbXn8B7l\ncjmnywSmHKEZAACM6ezplL/cL/M8D+Tw+X3KeXPq6+tzoDLAWYRmAAAwJjoUVUnowuOWvSVexRKx\nKawImB4IzQAAYIzLdMkqWBdcXigUZBrEB1x5eNcDAIAxDVUNisfiF1yeHc6qKlI1hRUB0wOhGQAA\njKmrqZOGpXQqfc6yoYEhlbnKVF5e7kBlgLOYpxkAAIwJBAK6buF12nNoj4bdw/KUeGRZlkYSIyp3\nl2vZomU81htXJEIzAAA4Szgc1kdWfkT9/f2KxWMyTENV86pUVlZGYMYVi9AMAADO4XK5VFNTo5qa\nGqdLAaYFxjQDAAAANgjNAAAAgA1CMwAAAGCD0AwAAADYIDQDAAAANgjNAAAAgA1CMwAAAGCD0AwA\nAADYIDQDAAAANgjNAAAAgA1CMwAAAGCD0AwAAADYIDQDAAAANgjNAAAAgA1CMwAAAGCD0AwAAADY\nIDQDAAAANgjNAAAAgA1CMwAAAGCD0AwAAADYIDQDAAAANgjNAAAAgA1CMwAAAGCD0AwAAADYcDtd\nAIDxKRQKGh4elmVZKikpkdvNxxkAgMnCWRaYYSzLUtepLrV3t2vEHJEkmTlTDRUNqqyolCSFw2F5\nvV4nywQAoKgQmoEZ5sixI2qPtStSH1Gpp1S5bE5dR9p1oO0X8iVyqqyuVMLl1lULl+r661tVWlrq\ndMkAAMx4jGkGZpB4PK7j/cdVfVW13B638vm8Tr53SCN796khIpXXGZozK6Lr59Uo2f6u/vGf/16x\nWEySlMvlVCgUHD4CAABmJq40AzPImb4z8oa9MgxDkhTrH5TZ2SlvsKDSirAyqYz6o31qKp2jq5uu\n0r6eM/rn1/9ZS2oaVRgeliUpUFOjmqYmhcNhZw8GAIAZhCvNwAwynB6Wx+sZe53o6lE2m1BJaYkk\nyeP1KJvLSpIMw5AvFlfs3XdUE49reWWllkciqo3FdGrHDvX19jpyDAAAzESEZuAiksmkuk+d0smO\nDvX19SmfzztaT8AXUDabHXudTaXkMiWX2yVJyo3k5HaPhupEPKGS6KDqSwNjH3TDMFQeCmlBWZl6\n9u49a1sAAODCGJ4BnEehUNCJw4eV7uxUpWnKZxhK5PPq8Xp11TXXqKKiwpG6aqtqdeLQCelfd+8O\nBJTJ5mRZlgzDUGY4o9rKWklS8kyf/G6Xkh6PTJfrrO14PR5VWpb6+/pUV18vSUqn0xoeHpZhGAqF\nQsy+AQDA7yA0A+fRcfSoPJ2dmldZOTZ+uFpSemREh995R+4bbnBkVopwOKxZ4Vk62XVSFXUVCs9u\nUM+Rw0omkrJylkJmSKFwSJI0khhW3uVSWSCs0lDonG0FvV5Fh4aUrarSwWMH1TPYI9NvypIlI22o\nsbpR8+bMk2nyCykAACZ8Nmxra1NLS4sWLFigjRs3XnC9nTt3yu1266WXXproLoFJlU6nlezo0Ozf\nCcwf8Hu9muX16syJEw5VJy1csFDzK+crfjKu7HBWyXCVOvb3qiQfVGNjowzDVDabU/dwSgm3R821\nTee9apzP5yWXS3sO7FFvrleVcyoVqY8oUhdRviSvn73xM/3gb3+gbTu2aWBgwIEjBQBg+pjwlebH\nHntMmzZtUlNTk2677Tbdd999qqqqOmudfD6vr371q7r99ttlWdZEdwlMqlgspsi/Dnc4n/JQSB1n\nziifz8v1b4Y9TAXDMDRn9hzNapil4eFhXdd8nU4sPKpDu7crduyU5JaG3W6lGuZosb9MV9Vfdd7t\n9OdyMk1Tg/lBVdWNfmazI1m99fZbOtx3WMlsUicOntD/avtfMkYM3Tj/Rj38wMOaNWvWVB4uAADT\nwoRC8wfzv65evVqStHbtWm3fvl3r1q07a72NGzdq/fr12rlz50R2B0yJQj4vz0WGJBiGIUOj456d\nCM0fcLvdKisrkyRVVlbqmpUr1d3drZGREQWDQQWDQXXu2aN4MqlwMHjW156KRlWoqdHQ8KCC5b9d\ntmfPHh1JHFEyn9R7R95Twp9QyewSuV1u/cOhf9Avv/JLPXDbA/qTP/oTxjwDAK4oExqesXPnTi1a\ntGjs9eLFi7Vt27az1unq6tLLL7+shx56SJIuePUOmC78gYDiF3kISHpkRPL55HZPr1sCPB6PZs+e\nrfnz56u+vl7hcFhNK1fqhMulw319Oh2Nqru/X/v6+hSvqdHcxYuVzqbHprBLDad09MxRGR5D+4/s\n10jDiMKLwsq5cxo2h+W+2q3YvJi+t/V7+s//53/WgfcPOHzEAABMnUk/6z/++ON68sknZRiGLMu6\n4PCMp556auzPq1evHrt6jcnndrvl9/udLmPaqK+vl3v5chmGIe95gnEqmdTC6moFAoHLsr/J7L/f\n71fVmjVKp9PKZrMyDEP1Pp88ntGgvGTBEmXcGXm9XsXdcX3q5k8pMZzQ8sbl8lZ5lUlllLfycvvc\nMkxDuWRO7qRbwUxQZ4bPqLSrVI2zGuXz+Sal/snGe99Z9N9Z9N859H5qtbW1qa2tbcLbMawJDDKO\nxWJas2aNdu3aJUl65JFHdPvtt581PGPu3LljQbmvr08lJSX6wQ9+oLvuuuu3RRiGotHoeMvABPn9\nfqXTaafLmFaGhobU+fbbajBNRUpLZZqmUpmMeoaGlK6t1fylSy/brBJO9j8ajert9rdV3VitjvYO\n/fLIL3Vw/0H1R/rlq/ap/3S//BV+eXz/Ovfz8YRcCZdyHTnVzamTe8St+ZH5unnhzbrr9rsUOs8s\nHdMZ731n0X9n0X/n0HtnRSKRcd1jN6Gz/gfjKdva2nT8+HFt2bJFra2tZ61z7Ngxtbe3q729XevX\nr9czzzxzVmAGpqNwOKzm1lbFGhr0biymPf39OmJZ8i5delkDs9MqKirUEGpQb1evQsGQjGFDVsGS\nJUvpRFour2ts+EZmIKNMOqNkLql8TV6li0uVrkvrmO+YvvP6d/T5xz/PfQsAgKI14eEZTz/9tDZs\n2KBsNqtHH31UVVVV2rRpkyRpw4YNEy4QcEpJSYnmLFgga/58WZZVNEH5dxmGoZYFLQqfCqu9p10V\nuQoZKUOZ7ozKFpYpp5xkSFbeUrIvKcsYnVXEX+FXz0CPotGoPG6PkqGk2rvb9e/+/N/p95b8nr71\njW+purra6cMDAOCymdDwjMtWBMMzHMWviZw1XfpfKBTU29urzS9t1t9t/ztpsZT2p+UKuJSNZZWL\n5ZRNZuU23fKV+zSiEQ0NDclV5pIZMpXrySl3OKd8Oq/aeK1+8OQPdOONNzp9WBc1XXp/paL/zqL/\nzqH3znJkeAaA4mGapmpra/WlL35J/37dv5frHZeS7ySVOppSIBOQeiQrZilcGZZ8UiKRkFVqySw1\nlR3KyupKqyqZ1dywJa+7Sxse/IyefPKvmJsdAFAUuNIMfuJ12HTtf39/v178+xf1d7/4O434Rkbn\np55jyFPv0YkTJzScH5a33qvccE7uE2k1DRdkDFnyjUihhGQOSdGUZNUv1P/88fNqbm52+pDOMV17\nf6Wg/86i/86h984a75VmQjP48Dpsuvd/cHBQb+16S7946xfadmKbNEvqGezRcGhYZthU+kRS8wdy\ncsUt1XZIkUrJ5ZcUk6yM1NUn7ZNX/+O/P6M//MM/dPpwzjLde1/s6L+z6L9z6L2zGJ4BYFKUl5fr\nE7d+Qv/py/9Jf3LTn6h2pFYBI6BCpqB8Mq+S03l5s5ZKu6TKMskVljQgyZSMaqm2UaqtHtEDX39A\n3/zmN50+HAAAxoXQDOCSBAIBfe7ez+kLN35Blacqld+TV+5wTq5oQfkBqVKSGZHUJykkqVqSRzKz\nUolbCoelb7/wba3/7HpHjwMAgPEgNAO4ZC6XS7etvU3P/fVzuqn0JqlLypmmzJAhd4mkpCRDUlBS\nWtKAlM9IFQWpyZSaK6Xd+36ha65drEwm4+ixAADwYRCaAXxoNTU1+t9/+7/1hRu+oEyfT4kOS/mE\npJikD54unpCUkcosKVIt+aukijlSU5NU4urR0mULlUqlHDsGAAA+DEIzgHExTVP/7Rv/TS/9zUvy\nmE3qHpSsEY0+MikpZdNSMCWl66V0Xsr4JHkko0wKLZL8JUOau3Kuuru7HT4SAADsEZoBTEhra6v+\n/qXX5JqzUod6pcFTUiwqxbJSvEZKmdJJQ3KVS/JI8o/eIFhRI2VrMrrpUzdxFzkAYNojNAOYsJqa\nGv3Tq/+iuls+pTeHpP0uqdclnTSldkvKV0nGB2Oe/aP/NwuS2y0N+Yf06c98WoVCweGjAADgwgjN\nAC6bv/3xZj34f3xN7b3SoawU80tGhWS6JQ3+60pZSRmp4JeyV0maJ23r26Zb77iVK84AgGmL0Azg\nsvqLv/gL/eRbP9Fwr5Tp1OiczSmN3iDoluSRrIQUHZEst0anp7tK2pvaq1s+cYuDlQMAcGGEZgCX\n3Z133qmtL2zVyT4p1SNZlqSMpIRUOC0NDUo9DZLmaDRIhyQ1SsdGjulPN/ypg5UDAHB+bqcLAFCc\nrr32Wv3q1R265eOtKktZCpZLlkeKuaTB2ZKuknRao8M1Ihq9STAhvbD9Ba15fo3uv/9+J8sHAEnS\n8PCwBgYGFB8a0nA6qZJQicpCZaquqpbX63W6PEwhwxrPw7cvdxGGoWg06nQZVyy/389YUgcVe/8H\nBga0qHWRspVZqUlSiUYD8xmNDtkIaPTmQL+kE5KiUuBoQG+98pbq6+sntbZi7/10R/+dRf8v7tix\nY/r5q68oeuSg/JmUgqV+hevrZNbVqLSpUUEzqGuar1F1dfWH3ja9d1YkEtF44i/DMwBMqoqKCr2/\n/X015huldklDkj6YmrlEo08PDGh07HNWUqmUqkzpib98wpmCAVzRMpmMnvmfz+iRr2/Q3m3/oETy\niAYC3YqXRJVK96h8aECFUz3yVHi0p32PhoaGnC4ZU4TQDGDSVVRUaPf23Wr0NY4+NTAnqVyjY5kN\njYboIUkVknyj///Ht/9Rb7/99tg28vm8kskkV2cATJrTp0/r8w9/Xt964Vsa6DukgaGT6jpzUkkj\npaSSio5E1RM7pWAirkT/gHwVPnV0dzhdNqYIY5oBTAnDMPTS//2SbrzjRuXdealSo7Nq9Gn0anOt\nJK+kvKTFUj6V13/4H/9BP9/8c53oPKHOvk7ljbxUkMr95Zo3e57Ky8sdPCIAxaS3t1f3PnSvDvoO\nyrhaCqdNZWQpGUsqfSIjq7FBZpmp+Ehc6XRCue4zqp0zS2eOn5FlWTIMw+lDwCTjSjOAKTNv3jy9\n9P2XpKMaHapxSqNDMyo1+iN8VFKp5Mq4FJwV1Emd1A//nx/qeOK4/DV+BSIBhepCGikd0Y6DO3Tm\nzBkHjwZAMfnzJ/5ch4OH5V3klbfMI5dXKrjyUq00Esro9KkzSo+kNZIf0XA6IeXzkiRL1rjGx2Lm\nITQDmFIf/ehH9V8f/6/SSY0+8MTQaFgekBSSXAGXzEFTpdWlMmtNvfnem8oMxnTmrXc1vGuf+nbs\nVt/R4/KUerT/xH7lcjlHjwfAzLdz505t696m4JKgXGGXFDY14nPJVeaSlZNUKqUzKQ3Hh5XJjiiX\nK8goCSiTyqi8pFymSZy6EvBdBjDlHn74YX1m1WdGZ9CQpDLJrDHlllvmKVPBkqBCZSHJJWlgUNX9\nA2opL1NzRZkWRio0O5NVcv8hDaYGNTAw4OShACgCr/7yVbnqXPKV+GRapuST+l2SZRoy3YasgqW8\nJ69kPCkrXZDpDSnYWK+hviE1NTQ5XT6mCKEZgCO++399V7PMWfJ0eeTp8Mh9zC1vn1cV4QrVNdbJ\n6/HKe0ZaVV2rinDpWeMFgwG/moJBJU6eVCqdcvAoAMx0yWRSg9lBub1umQVTLrdLpmUqWmOoJyNZ\nbpestKX8cF4jQzkZVkj5hlnKJfOaVzlPVVVVTh8Cpgg3AgJwhMvl0n98+D/qL1/+S3kbvfIEPHJ7\n3XKZLnncHlkJS7VRn66945rzfr3f51VwOK1UktAMYPzy+bxq62oV6ggpnU3L6/fKkiUZ0um6gqJD\nefn7LKnLUtnVs9R8w21aumiZmhqauBn5CkNoBuCYz3zmM9p7aK+2nNoio8GQx+uR23RLfZL/tF9r\nl14nv89/3q+1rIICWUOhUGiKqwZQTHw+n+bUz1FzbbP2ndon9yy3DI+hrCurXCGnjKegwcGC1ixZ\no7/98fNyu4lOVyq+8wAcYxiG/svX/otW/XyVXvn1K4pGo3Ibbs2tnqs7PnuHgkNxmQM9SnmSCgRL\nxr6uUMgr1htTRXmtSkpKLrIHALg4r9erljkt6kx0KrMno+Ptx2WUGjLdpsxhU95Or1aWrdRPf/xT\nuVwup8uFgwjNABzldrt19513647fv0N9fX0yTVORSEQul0tH9+1TqcejgcFeDcYHZXoMJYdTSg+l\nVRGqUDoSUjAYdPoQAMxwV8+7Wn2xPvk8PnX1dunwicOKD8XlL/h1w8036OHPP0xghgxrGkwuaBiG\notGo02Vcsfx+P09ZcxD9v7Dh4WEd37lTTW63TMvS4fbDimVi8pT61J1OS01NioQqtWzeMkUikQ+9\nfXrvLPrvLPp/tpGREXV2derg8YNKjiRlytS8WfN09dyrFQgELuu+6L2zIpHIuObWJjSDD6/D6P/F\nxeNxnTx4UB3v7VI2H5e3tEQ96YxcJX6VBkukEr+Mgl9rrl+j0tLSD7Vteu8s+u8s+n9+hUJBuVxO\nLpdr0q4u03tnjTc0M+UcgGmttLRUs1talG2ul2/VNeo3pDklfi32eFSXSKqss1vJI+9r5843nS4V\nQBEwTVNer5fhGDgHoRnAtDc4OKiSyhIlu89ogccrI5VSR/dxdce7NDjSJ8/IkA7+aou6u7udLhUA\nUKQIzQCmPcuyNDw8rEA8odhAnwZyAwrVhlQaKVVppFTlV4UV8Gf15q+2qFAoOF0uAKAIEZoBTHvB\nYFDJaEKeVFrxbEKhitDYEwIty1IymVJtbZUSQ6fV29vrcLUAgGLElHMApr3y8nIFjKD6+vpUUuOR\nNBqW4/G4BmODig3FVFNao94Rl/Yf2a/a2lqHKwYAFBuuNAOY9gzD0PXLrtfpwbQyqYzyubx6e3vV\n1dellJVSXW2dgpVhWbVBvdfxnk51n3K6ZABAkSE0A5gRGhoaNHdFq5T0KHYqpjNnzqgsWK7GqkZV\nlEd0JpNVoKFSdY11er/zfWUyGadLBgAUEUIzgBnjxo/9nuJlNRq2XGpoaFRFWaXSOUvtiaTy8xrk\nslyqq62TUWKor6/P6XIBAEWE0AxgxohEIrpl9W06GQioMxxUh9+r/quq5V3cLOVN1ZfWq7SsVB6/\nR0PJIafLBQAUEW4EBDCjzGuep5XzVqon16O8mZcsyYybaq5pVnVNtSQpl8vJ6/M6XCkAoJgQmgHM\nOMsXLZcv6lNpeaksy5LX5x2bgk6SsvGsqhuqHawQAFBsGJ4BYMapqalRYCSgTCojn9931pzN/T39\nqiutUzgcdrhKAEAx4UozgBnH4/Fo5eKV2n94v/o6+mT4DMmSlJKuqrhKC+YtcLpEAECRITQDmJEC\ngYCuW3ad4vG4ksmkDMNQOByW3+93ujQAQBEiNAOY0UpLS1VaWup0GQCAIkdoBlB0YrGYOns6FR2K\nyjRM1VfWq6GuQYFAwOnSAAAzFDcCAigqHZ0d2nFohwbMAQVnBeWv96sj1aE3976pWCzmdHkAgBmK\n0AygaMRiMR3sOajIrIhKy0rlcrnk9rhVUVWhYF1Quw/tVi6Xc7pMAMAMRGgGUDROnj4pf7lfLpfr\nnGU+v085b47HawMAxoXQDKBo9Mf6VRIqueByb4lXg4nBKawIAFAsCM0AiobLdMkqWBdcXigU5DLO\nvQoNAIAdQjOAolFfWa94LH7B5dnhrKoiVVNYEQCgWBCaARSN+tp6aVjKpDPnLBsaGFKZq0zl5eUO\nVAYAmOmYpxlA0QgEArr26mu15/AeJTwJeUu8KhQKyg5nVeYq07JFy2QYhtNlAgBmIEIzgKJSVlam\nj6z4iPr7+zUYH5TpNlXVXKXy8nICMwBg3AjNAIqO2+1WbW2tamtrnS4FAFAkGNMMAAAA2JhwaG5r\na1NLS4sWLFigjRs3nrN88+bNWr58uZYvX677779fhw4dmuguAQAAgCk14dD82GOPadOmTdq6dau+\n+93vnvO0rblz56qtrU179uzRbbfdpm9+85sT3SUAAAAwpSYUmmOxmCRp9erVampq0tq1a7V9+/az\n1rnppptUVlYmSVq3bp1ef/31iewSACYknU4rkUgom806XQoAYAaZ0I2AO3fu1KJFi8ZeL168WNu2\nbdO6devOu/73v/993XnnnRPZJQCMy9DQkLqPHFFhYEBeSSlJ81pbZbjd8vv9TpcHAJjmpmz2jK1b\nt+q5557TG2+8cd7lTz311NifV69erdWrV09VaVc8N6HBUfR/8mUyGRnDw1rc2Cjf3LmSJEuSFQio\nNxpVKBSS281kQlON976z6L9z6P3UamtrU1tb24S3Y1iWZY33i2OxmNasWaNdu3ZJkh555BHdfvvt\n51xpfvfdd/XpT39ar776qubPn39uEYahaDQ63jIwQX6/X+l02ukyrlj0f3JZlqX9b76p+aapkn9z\nkvLNmaOTu3crVl+v5oULHarwysV731n03zn03lmRSETjib8TGtP8wVjltrY2HT9+XFu2bFFra+tZ\n63R0dOiee+7R5s2bzxuYAWAyxeNxBZLJcwLzByrDYQ13dSmXy01xZQCAmWTCv498+umntWHDBmWz\nWT366KOqqqrSpk2bJEkbNmzQN77xDUWjUT344IOSJI/Hox07dkx0twBwSTKZjAIXeRKgaZrySRoZ\nGWGIBgDggiY0POOyFcHwDEfxayJn0f/JNTAwoKG339bcqqpzlvnmzFG6vV17Bwa04JZb5PV6Hajw\nysV731n03zn03lmODM8AgOmurKxMca9XIxeYYm4wkZCvuprADAC4KEIzgKJmmqZqFi7U0YEBZUZG\nzlqWyWbVmc2qrrnZoeoAADMFA/gAFL2a2loZK1bo/YMHFRoakts0lbYs1TU2qvH66xUKhZwuEQAw\nzRGaAVwRqmtqVFlVpXg8rlwupzKvV1XV1YwrBABcEkIzgCuGaZpjU2UCAPBhMKYZAAAAsEFoBgAA\nAGwQmgEAAAAbhGYAAADABqEZAAAAsEFoBgAAAGwQmgEAAAAbhGYAAADABqEZAAAAsEFoBgAAAGwQ\nmgEAAAAbhGYAAADABqEZAAAAsEFoBgAAAGwQmgEAAAAbhGYAAADABqEZAAAAsEFoBgAAAGwQmgEA\nAAAbhGYAAADABqEZAAAAsEFoBgAAAGwQmgEAAAAbhGYAAADABqEZAAAAsEFoBgAAAGwQmgEAAAAb\nhGYAAADABqEZAAAAsEFoBgAAAGwQmgEAAAAbhGYAAADABqEZAAAAsEFoBgAAAGwQmgEAAAAbhGYA\nAADABqEZAAAAsEFoBgAAAGwQmgEAAAAbhGYAAADABqEZAAAAsEFoBgAAAGy4nS4AADBzZLNZRaNR\nHWs/po7eDhWsgmbXzNbihYtVUVHhdHkAMGkIzQAAW7lcTu0n2rX36F79Zv9vlDSTCpYGVROpUXd/\nt3b8vzv08eUf17Kly5wuFQAmBaEZAK4Aw8PDyufz8vl8GhgYUCKRUCAQUF1dnVwu10W/tlAo6N0D\n76on06O9vXvlv9qvuqo65XN5xXvjqvZWK9wS1r/s/RdVVlTqqquumqKjAoCpQ2gGgCLW19enI51H\nNJwfVufJTr2x8w3F83GVVZbJZ/jUEGzQHR+7Q0sWL7ngNvr7+9Wf7deINaKEkVB1ZbUkyeV2qbSu\nVH1dfSqvLJev1qfdB3YTmgEUJW4EBIAidfr0ab1z7B0pIkWHo9q6f6uyi7Oq+EiFPHM9qryuUv0V\n/frJlp9o9+7dF9xOZ0+nQhUhneo9JW/YK8MwxpYZhiFXyKWhwSEFy4PqifconU5PxeEBwJQiNANA\nEcrn8zpw4oAqGipUyBf05rtvyt3kVkV9hfwhv3KenFLplKqaq+Sqc+m1Ha9dMOwmM0l5fd4L7svl\ncSmbzU7WoQDAtEBoBoAiNDAwoJwnJ4/Xo9OnT+vMyBmVVZeNLfcH/IolYpIl+Sv9ihaiam9vP++2\nSnwlGsmMqL6qXpmhzDnL89m8PB6PhmPDqgnWyOfzTdpxAYBTCM0AUISy2awMz+gwilg8JstryeX+\n7Q1/hstQQQUVCgV5fB7lrJyS6eR5t9VY16jEQEINdQ0KK6yh/qGxZZZlKZ/Iy+v3Kn06rRUtK2QY\nhjKZjDpPdmr3/t3avX+3uru7lcvlJvegAWASTTg0t7W1qaWlRQsWLNDGjRvPu87XvvY1zZ07V9dd\nd53ef//9ie4SAGDD4/HIylmSpGAgKDNvKp/L/3aFgmTKlGmaKuQKMnKGgoHgebdVWVmpSk+lr7Dc\n4wAADOxJREFUErGEPrL8I1KvdPrYacX6Y+pt71UhXlCiPaE1LWs0a9YsRaNR/WbPb3R48LBSgZSS\n/qQO9B7Qtt3blEgkpuLwAeCym3Bofuyxx7Rp0yZt3bpV3/3ud9XX13fW8h07dujXv/613nrrLX3l\nK1/RV77ylYnuEgBgo7y8XK4Rl/K5vGpqalTjr1G8Pz62PJ1MKxwMyzANDfcPK+KOqLm5+bzbMk1T\ny1qWaXbJbJnDpm5acJOudl8tz2GPZiVm6RNzP6HPrf2crl1+rVKplHYf2a1QQ0iRmogCwYBKQiWK\n1EVkRkztObhH+Xz+vPsBgOlsQlPOxWIxSdLq1aslSWvXrtX27du1bt26sXW2b9+u9evXKxKJ6L77\n7tMTTzwxkV0CAC6B2+3WwsaFeu/kewrXhnVN8zV6/b3XNegalD/glzliqqyyTP1d/UodS+ne2++9\n6Fhkt9utBfMWaM7sOUqlUtISKRQKyTTPvvbSc6ZHRsiQ13vujYMloRL1D/Wrv79fNTU1l/2YAWAy\nTehK886dO7Vo0aKx14sXL9a2bdvOWmfHjh1avHjx2Ovq6modPXp0IrsFAFyChvoGLZ+9XPnevOor\n6nV9w/Uy9hqK7owqczKjjv+vQ4GOgP503Z9q+bLll7RNj8ejcDiscDh8TmCWpNPR0wqGzz/MQ5J8\npT71DvaO+5gAwCmT/nATy7JkWdZZf/e7c3x+4Kmnnhr78+rVq8euXmPyud1u+f1+p8u4YtF/51wJ\nvW9qalJTU5MymYysG0b/PU6n0xoZGZHP51N5efll3d+C5gUyg6ZM1/mvyYyUjihQCMjv918R/Z/O\n6L9z6P3UamtrU1tb24S3Y1j/NtF+CLFYTGvWrNGuXbskSY888ohuv/32s4ZnbNy4UblcTn/2Z38m\nSZo3b945V5oNw1A0Gh1vGZggv9/PwwgcRP+dQ+8vvyPHjuhk5qTKK88fxvu7+7Wkdonq6urov8Po\nv3PovbMikcg5F3QvxYSGZ5SVjc752dbWpuPHj2vLli1qbW09a53W1la9+OKL6u/v1/PPP6+WlpaJ\n7BIAMI3V19arEC8oO3Luw05SyZQ8WY+qqqocqAwAJmbCwzOefvppbdiwQdlsVo8++qiqqqq0adMm\nSdKGDRt0ww036JZbbtH111+vSCSi5557bsJFAwCmp2AwqGuar9He9r0ygoZKSktkWZaS8aRcKZdW\nLlwpt3vSRwYCwGU3oeEZl60Ihmc4il8TOYv+O4feT55UKqWeMz3qj/XLkKG6yjpVV1efNasG/XcW\n/XcOvXfWeIdn8OM+AOCyCwQCam5qVrPOP/czAMw0PEYbAAAAsEFoBgAAAGwQmgEAAAAbhGYAAADA\nBqEZAAAAsEFoBgAAAGwQmgEAAAAbhGYAAADABqEZAAAAsEFoBgAAAGwQmgEAAAAbhGYAAADABqEZ\nAAAAsEFoBgAAAGwQmgEAAAAbhGYAAADABqEZAAAAsEFoBgAAAGwQmgEAAAAbhGYAAADABqEZAAAA\nsEFoBgAAAGwQmgEAAAAbhGYAAADABqEZAAAAsEFoBgAAAGwQmgEAAAAbhGYAAADABqEZAAAAsEFo\nBgAAAGwQmgEAAAAbhGYAAADABqEZAAAAsEFoBgAAAGwQmgEAAAAbhGYAAADABqEZAAAAsEFoBgAA\nAGwQmgEAAAAbhGYAAADABqEZAAAAsEFoBgAAAGwQmgEAAAAbhGYAAADABqEZAAAAsEFoBgAAAGwQ\nmgEAAAAbhGYAAADABqEZAAAAsEFoBgAAAGwQmgEAAAAbhGYAAADABqEZAAAAsEFoBgAAAGyMOzTH\n43Hdfffdmj17tv7gD/5AiUTinHU6Ozt16623asmSJVqzZo2ef/75CRWLydHW1uZ0CVc0+u8ceu8s\n+u8s+u8cej8zjTs0P/PMM5o9e7YOHz6sWbNm6dlnnz1nHY/Ho29/+9vat2+fXnjhBT3xxBOKx+MT\nKhiXHx9eZ9F/59B7Z9F/Z9F/59D7mWncoXnHjh164IEH5PP59MUvflHbt28/Z526ujqtWLFCklRV\nVaUlS5borbfeGn+1AAAAgAPGHZp37typRYsWSZIWLVqkHTt2XHT9I0eOaN++fbrhhhvGu0sAAADA\nEYZlWdaFFn7yk59UT0/POX//V3/1V/ryl7+sQ4cOye/3K5lMqqWlRSdOnDjvduLxuNasWaOvf/3r\nuvvuu89ZPn/+fB09enQChwEAAADYmzdvno4cOfKhv859sYVbtmy54LKf/OQnOnDggFauXKkDBw5o\n1apV510vm83qnnvu0ec+97nzBmZJ4yocAAAAmCrjHp7R2tqqH/3oR0qlUvrRj36kG2+88Zx1LMvS\nAw88oKVLl+rxxx+fUKEAAACAU8Ydmh966CF1dHRo4cKF6urq0oMPPihJOnXqlNatWydJ+s1vfqPn\nnntOv/jFL7Ry5UqtXLlSr7766uWpHAAAAJgiFx3TDAAAAMChJwLyYBRntLW1qaWlRQsWLNDGjRvP\nu87XvvY1zZ07V9ddd53ef//9Ka6wuNn1f/PmzVq+fLmWL1+u+++/X4cOHXKgyuJ0Ke99aXRWILfb\nrZdeemkKqyt+l9L/nTt3atWqVWppadGaNWumtsAiZtf7VCqlz3/+81q5cqU+9rGP6eWXX3agyuL0\nxS9+UbW1tbrmmmsuuA7n3Mlj1/9xnXMtB3zrW9+yvvzlL1vpdNr60pe+ZP31X//1Oet0d3dbu3bt\nsizLsnp7e63m5mZraGhoqkstKitWrLBef/116/jx49bChQut3t7es5Zv377duvnmm63+/n7r+eef\nt9atW+dQpcXJrv9vvPGGNTg4aFmWZf34xz+2/viP/9iJMouSXe8ty7JyuZx16623WuvWrbNeeOEF\nB6osXnb9LxQK1tKlS60tW7ZYlmWd9/uD8bHr/TPPPGM99NBDlmVZ1vHjx625c+dahULBiVKLTltb\nm/XOO+9YS5cuPe9yzrmTy67/4znnOnKlmQejTL1YLCZJWr16tZqamrR27dpz+r59+3atX79ekUhE\n9913nw4cOOBEqUXpUvp/0003qaysTJK0bt06vf7661NeZzG6lN5L0saNG7V+/XpVV1dPdYlF7VL6\n/9Zbb2nZsmX6xCc+IWn033xM3KX0vqysTPF4XNlsVtFoVCUlJTIMw4lyi85HP/pRVVRUXHA559zJ\nZdf/8ZxzHQnNPBhl6v1uzyVp8eLF2rZt21nr7NixQ4sXLx57XV1dzfzZl8ml9P93ff/739edd945\nFaUVvUvpfVdXl15++WU99NBDkkRouIwupf+vvfaaDMPQRz/6Ud1555167bXXprrMonQpvb/vvvuU\nz+dVVVWlW265RZs3b57qMq9YnHOnj0s95150nuaJuNiDUawPce9hPB7XZz/7WX37299WMBi8nCXi\n37As65zvDeFh6m3dulXPPfec3njjDadLuWI8/vjjevLJJ2UYxnk/B5hc6XRau3fv1tatW5VMJvXJ\nT35S7733ngKBgNOlFb3vfOc7crvd6u7u1t69e7Vu3TqdOHFCpunINbUrCufc6eHDnHMn7VOxZcsW\n7d2795z/7rrrLq1atWrs1xATfTAKLs2qVavOuslg375958yt3draqv3794+97u3t1dy5c6esxmJ2\nKf2XpHfffVcPPvigXnnlFZWXl09liUXrUnr/9ttv695771Vzc7NefPFFPfzww3rllVemutSidCn9\nv+mmm/SpT31KdXV1mjt3rq6//nq1tbVNdalF51J639bWpj/6oz9SSUmJWltb1dDQwE3IU4RzrvM+\n7DnXkR8leTDK1Ptg3E5bW5uOHz+uLVu2qLW19ax1Wltb9eKLL6q/v1/PP/+8WlpanCi1KF1K/zs6\nOnTPPfdo8+bNmj9/vhNlFqVL6f2xY8fU3t6u9vZ2rV+/Xs8884zuuusuJ8otOpfS/xtvvFGvv/66\nksmkotGodu3apZtvvtmJcovKpfT+4x//uH72s5+pUCjo2LFjikajZw3pwOThnOuscZ1zL8stih/S\n0NCQddddd1mNjY3W3XffbcXjccuyLKurq8v6/d//fcuyLOvXv/61ZRiGtXz5cmvFihXWihUrrJ//\n/OdOlFs0fvWrX1mLFi2y5s2bZ/3N3/yNZVmW9eyzz1rPPvvs2Dpf/epXrTlz5ljXXnuttX//fqdK\nLUp2/X/ggQesSCQy9n5ftWqVk+UWlUt573/gC1/4gvXiiy9OdYlF7VL6/73vfc9qaWmxVq9ebf30\npz91qtSiY9f7wcFB69FHH7VWrlxprV271vqnf/onJ8stKvfee69VX19veTwea9asWdYPf/hDzrlT\nyK7/4znn8nATAAAAwAYj/QEAAAAbhGYAAADABqEZAAAAsEFoBgAAAGwQmgEAAAAbhGYAAADABqEZ\nAAAAsPH/AwjmqnJyCRBnAAAAAElFTkSuQmCC\n", "text": [ - "" + "" ] } ], - "prompt_number": 160 + "prompt_number": 1120 }, { "cell_type": "code", @@ -1456,7 +1438,7 @@ "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 161 + "prompt_number": 1121 }, { "cell_type": "code", @@ -1486,7 +1468,7 @@ "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 162 + "prompt_number": 1122 }, { "cell_type": "code", @@ -1498,9 +1480,9 @@ "\n", "X_mds = clf.fit_transform(X_scaled)\n", "print(\"Done. Stress: %f\" % clf.stress_)\n", - "plot_embedding(X_mds,\n", - " \"MDS embedding of the digits (time %.2fs)\" %\n", - " (time() - t0))\n", + "#plot_embedding(X_mds,\n", + "# \"MDS embedding of the digits (time %.2fs)\" %\n", + "# (time() - t0))\n", "\n", "#print clf.get_params(True)" ], @@ -1512,7 +1494,7 @@ "stream": "stdout", "text": [ "Computing MDS embedding\n", - "breaking at iteration 94 with stress 606.440932964" + "breaking at iteration 83 with stress 784.894512328" ] }, { @@ -1520,58 +1502,11 @@ "stream": "stdout", "text": [ "\n", - "Done. Stress: 606.440933\n" - ] - }, - { - "html": [ - "\n", - "\n", - "\n", - "
\n", - "" - ], - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAW0AAAD/CAYAAAA62IfeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVNX/P/DXGXbZBkFlXyQ33BfQkASUQkUrl9wF1KSo\nj5npw9KPe5mVuaRm2Y6VmYmapQimgzuLZih+BVERBE1A2WSHef/+4Mf9MMimsg28n48HD5i59557\nzgCvOXPuufcKIiIwxhhTC7LmrgBjjLH649BmjDE1wqHNGGNqhEObMcbUCIc2Y4ypEQ5txhhTIxza\nLYy9vT2OHTvWIGX5+/tj+fLlNS6XyWS4efMmACAwMBAffPBBg+z3cdy6dQuvvPIKTExMsG3btnpt\nU7neDc3e3h7Hjx8HAHz44YeYO3duvbZbt25dvdetjxEjRiAyMrLG5aNHj8aPP/7YYPtryfbs2YNZ\ns2Y1dzVaDmol7OzsSFtbmzIyMlSe79evHwkhKCkpiYiI/Pz8SFtbmwwNDalTp07k4uJCH3/8MRUU\nFEjbKJVKWr9+PQ0bNowMDQ3J3t6e3n777SZph729PR07dqxByvL396fly5fXuFwIQTdu3GiQfT2p\n999/n+bMmUNlZWXVLnd3d6dvvvlG5bnGrHdDvP6JiYkkhKixTXWJiIggZ2dn6fHKlStpxowZT1Wn\np3Hw4EHq2bMnmZqa0vTp0ykvL6/GdT08PKhDhw7Uvn178vb2pr179z5xWRVKSkrI3t6ebt++/dRt\naQ1aTU9bCIHOnTvjl19+kZ67fPkyCgoKIIRQWe/dd99FTk4OIiMjMWXKFOzevRvu7u5QKpUAgIMH\nD2Lnzp34/PPPkZOTg/DwcAwcOLDJ29QQqIWfO3X69GkMHjwYMln1f4qVf3fq5klf+48//hhvvvlm\nA9fmySQmJmLatGl47bXXcPbsWdy+fRvz5s2rcf0tW7YgNTUV9+7dw7x58/Dqq68iPT39icqqoKmp\nCT8/P2zatKnB2qXWmvtdo6HY29vTBx98oNJDWbhwIa1du1alp+3v70/Lli1T2fb69eskhKBvv/2W\niIimTZtGq1evrve+79y5Q2vWrCFHR0eaNGkSRURESMv8/PxowYIF9Morr5CpqSn5+PhQXl4eLV++\nnGxsbGjcuHEUHx+v0o6tW7eSs7Mzde7cmb744gsqLi6WlsfExNBrr71GNjY29M4770jtIiK6desW\nzZ07lzp16kSvvvoqzZgxQ6Wthw4dImdnZ+rWrRvt2bNHpcfq5+cnratQKMjKyop27NhBDg4O5Orq\nSocPH5bKyc3NpbVr15KVlRV5enrSunXryM3NrcbX58KFC+Tn50d2dna0bNkySk1NJSIiT09P0tDQ\nIF1dXTI0NKSEhASV7ZYuXSotNzAwoHnz5hFReU/7p59+or59+5KjoyNt3LhRZbtTp07RtGnTyN7e\nnlatWkXp6ek11u3s2bP0/PPPk52dHW3ZskWlp121h1uxrq2tLX322WdkZ2dX7bo2NjYkhCADAwMy\nMDCgiIgIunPnDk2bNo0sLCzIzMyMJk+eXGOd5HI5xcXFERFRSEgIaWtrk5aWFhkYGFC/fv2ISPUT\nyPfff09Dhw6llStXkqWlJQ0cOJAuXbpEv/32G/Xq1YsGDhxIR44ckcovKSmhX3/9lTw9Palv3770\nzTffUFFRUbV1WblyJXl5eam8Bnp6epSfn19j/YmIioqKKCQkhExNTSk3N7deZR04cIA8PDzI2NiY\nHBwc6Oeff5bWDQkJkdre1rWanjYADBkyBDk5OYiLi0NZWRl+/fVXzJgxo87tHB0d0adPH0RHRwMA\nvL298eWXX2L9+vWIjY2tc3sfHx9oamri/Pnz8PX1xahRo5CXlyct/+677zBjxgxcvnwZGRkZcHZ2\nRrt27RATE4OOHTvi448/ltYlImzbtg0bN27Evn378NVXX+G7774DANy/fx8eHh4YNWoUYmNjYWZm\nhqlTp0rbTpgwAUZGRoiNjUW3bt2wZ88eqacaGxsLX19fLF++HIcPH8YPP/yg0gYhhEqvNi0tDf/8\n8w8iIyMxa9YsBAQESMtWrVqF06dP4/Tp03jnnXewZcuWGnvE+fn5cHd3h5ubG6Kjo5GTk4Np06YB\nAI4fP47nnntO+kTzzDPPqGy7du1aaXlubi62bNmi8pru3r0be/bswcqVK3Hjxg0AwKVLlzB16lTM\nmjULf//9N+7fv4/58+dXW7esrCx4eXlhxowZOHv2LCIjI5GamqrymlRd18/PDxEREbhw4QLu3LlT\n7bqnTp0CAGRnZyM3NxeDBw/Gxo0bYWVlhRs3biA1NRVvvfVWtXW6e/cucnJy4ODgAAAYOXIkli5d\niilTpiA3NxcXL16U9ld5n9HR0dDS0kJsbCwGDRqEl19+GX/88QfCwsLwn//8B2+88Ya07vbt27Fj\nxw5s3boVwcHB+OmnnxAUFFRtfeLj49G7d2/pcc+ePVFYWIikpKRq1weAMWPGwNDQEJMnT8bx48dh\nYGBQZ1klJSWYP38+PvroI2RlZeHcuXPo16+ftK6joyPi4+Nr3Gdb0qpCGwBmzpyJnTt34ujRo3By\ncoKVlVW9tnNzc0NycjIAYMaMGdi+fTvCwsIwaNAguLi44M8//6x2u4SEBOTn52PJkiWQy+Xw8fGB\nu7s7Dh8+LK3j7u6OF198ERYWFnjxxReRnp6O9957DyYmJvD19VU58CiEwKRJk+Dm5oa+ffvi9ddf\nl/a9b98+TJw4ES+99BKMjIywePFiXL9+HWlpabh37x6uXLmCDz74AGZmZli0aBE6deoklXv48GGM\nHj0aY8eORefOnbFw4cJH2kKVPs4rlUqsWbMGHTp0gL+/P7KysqR/mpCQECxatAj29vYYM2YMvLy8\nahwKCA0NRe/evfHqq6+iQ4cOWLduHaKjo3H//v1q91ud6pa/+eab6N69OwYMGABXV1ccPXoUAPDr\nr78iMDAQXl5eMDExwcqVKxEWFobS0tJHyggLC8PAgQPh6+sLS0tLrFmzRmW9yvutWHf69OmwsLDA\nypUra1y3uvoqlUrcvXsXaWlp0NbWhqura7VtvX37Ntq3bw9tbW2V8up6jQwMDLBkyRKYmJhg5syZ\nSExMxKJFi2BhYYEZM2bg33//lYL2119/xfvvv4+ePXvC0dER8+fPx4EDB6ot98GDB9IbCAAYGRnB\nzMxM5fdX1Z9//om0tDR88MEHGDFiBB48eFBnWUIIFBcX4/r168jPz0enTp3g5OQkrWttbY3CwkLc\nu3ev1tehLWhVoS2EwMyZM/Hzzz8jKCgIvr6+9R5XPHnyJGxtbQGUz054+eWXcfToUaSnp2PMmDFS\nT6eqv/76C4mJiTAxMZG+jh07JvW2hBDo27evtH7Hjh3Rs2dPlceVe3cAVHoY/fv3x7lz56R9/fzz\nz9J+zMzMkJeXh5MnTyIqKgrPPPMMdHV1pW0HDBgg/RwVFfVIubWxsLCAmZkZgPIxRTMzM6SmpiIn\nJwdXr15V2b7yfqo6e/asyvJ27dqhS5cuOHv2rPRcXePW1S2v3BYLCwup1/vXX39h3bp1MDExgY6O\nDjp06ICMjAx0794dAQEB0htPTEwMFi1ahIiICMhkMjg4OKBz584wNjZW2U98fLwU1ufPn8ecOXMA\noNp1a7N06VJYW1vj2Wefhaura40haWdnhwcPHqC4uLjeZQOAk5OTdFyg4s26olerqamJ9u3bIzU1\nFXl5eTh37hx8fHykvyN/f3+V30dlpqamKjN1cnJykJGRAVNT01rrY2xsjHnz5sHGxkbqwNRWlqam\nJoKDg7F3715YW1tjzpw5SExMlNZNSUmBrq6uSkekrWpVoQ0Atra26Ny5M0JCQjB+/Phq16kaAjdu\n3EBsbCycnZ0fWdfQ0BBLliwBEUnDJ5UNHz4cjo6OyMzMlL5ycnJUPsrX942jQsVHYAD4+++/pV7Z\n8OHD4evrq7Kvhw8fYuLEiXB2dsb169dRUFCgsm0FFxeXR8qtqj4H/YyMjNC9e/c6y6owdOhQXLhw\nQXqcl5eHhISEGnuaVWloaEgHiOtj+PDhWLZsGTIzM+Hq6opp06Zhzpw5KCsrwzfffIO3334bQHmP\nloigp6cHoLztN27cQHZ2tlRWWFgYoqOjERcXhwEDBsDQ0FAKkps3b6qsW7XOgOrv3dTUFOvWrcOd\nO3ewYsUKTJ8+HZmZmY9s26lTJ8jlcpXA0tTUbLADyvr6+hg8eDBCQ0Olv6GsrKxq6wIA3bp1w+XL\nl6XHsbGx0NXVhZ2dXb32V1BQAHNz83qV9eyzz2L//v24desWtLS0sHjxYmnd69evo2vXro/d3tao\n1YU2AHz77bc4fvy49A9ZWeWPmklJSfjss88wefJkDBo0SJoL+tlnn+HEiRMoKCjA/fv38emnn6Jj\nx47w8PB4pLxu3brBwMAAn376Kf7991+UlJRI/+gV+3scRITg4GCcOXMGly5dwldffYUxY8YAACZN\nmoR9+/bhwIEDyMvLQ15eHg4dOoSHDx/C3NwcPXv2xMqVK5Geno6NGzeqfJQcPXo0jhw5gkOHDuHm\nzZvYvHlzja9LXUaPHo0NGzYgKSkJhw8fxrFjx2oM/Oeffx5XrlzBd999h7S0NCxbtgzOzs4qPbXK\n+/Xz84OVlRX09PTQp08fpKenQ6FQgIgQExODESNGgIjg6OgofdSuXPfOnTvj/fffh5mZGZKTk0FE\neOaZZ7Bjxw4AwPnz5wGUj7tevnwZRUVFICKUlpZi9erV0NTUBFA+fzwyMhIymQzx8fEIDQ1FXl4e\n5s6di7t372LNmjXSulVZW1ujY8eO0r4A4LfffkNKSgqUSiX09fWhr68vhXtVw4cPR0REhPR44MCB\n+L//+z8UFRXV/oupp5kzZ2LFihX4+++/oVQqkZqairCwsGrX9fPzQ1RUFD7//HPEx8fjvffew7Rp\n06r934qPj0dISAgKCgrw77//4pNPPkFRURG8vLzqLCstLQ2///478vLyoKGhAV1dXRgaGkplR0ZG\nYsSIEQ3SfnXXKkO7c+fOKh/Jq075++STT2BkZAQXFxfs2rULEydOxMmTJ6X12rVrh4ULF8LCwgKD\nBg1CQkICdu7cWeO0tAMHDqCkpAQjRoyAhYUFlixZIn28rXrAqOrj6ur35ptv4p133sHLL7+MOXPm\nwN/fHwBgYmKC0NBQKBQKdO3aFV26dMHOnTulbX/77Tc8ePAAvXr1QlxcHCZPniwt69WrF77//nus\nXr0ao0ePhp+fX631qq3XvXLlSulj/qefforZs2fDyMio2nX19fVx/PhxnDhxAs7OztDT08PPP/9c\nY/uTk5Ph6emJ6dOnIzc3F5cuXUJoaCg6dOiAFStWqLwRVWxXUff8/HwsX74ceXl50NPTQ3JyMnbt\n2oVVq1YhICAAcrkcGzZskLaXy+VYsWIFAODOnTtwcXGBtbU1ACAiIgJKpRJ6enoYO3YsHB0d4enp\nic2bN2PIkCEYMGAA5HK5NERS+fUTQmD58uWYM2cO2rdvj8jISJw/fx5DhgyBiYkJVq1ahS+++KLG\n1+zdd9/F9u3bpcfu7u7o2rUrHBwcMGjQoEfWr+tvqqq5c+di9uzZWLFiBdq3b4/nn38e165dq3Zd\ne3t77Nq1C1988QWGDh0KW1tbbN26VVoeGBiIwMBAAOVvnqtXr0anTp3w3HPPIS0tTWUYqLaylEol\nNm3aBCsrK3Tv3h0PHjzA6tWrAQClpaXYuXMn3nnnnRrb1KY0xRQV1rpNnDiRNmzY0ODlhoaGkhCC\nzMzMVJ4/cOAACSHIwcFB5fnz58+TEIL09fVJqVRSamoqAZC+5HI5ff311yrb7N+/v9qy1q9fT0II\nEkKQs7MzjRgxgoQQZG9vT0qlkmJjY0kul5NSqWzwdhMReXl5qUwdbcv27NlDs2bNau5qtBgc2uyx\nxcXFUUxMDBUWFtJPP/1ExsbGdPny5QYrf+vWreTv7092dnZkYmJCQUFBKstrCloiogkTJpAQgl54\n4QVydXUlDQ0N+s9//kNfffUVCSFIU1NT5azZmsoKDw8nIQTp6elJZ8uampoSAPr2229pwoQJNGHC\nhAZrM2P11SqHR1jjys3NxYQJE2Bqaopff/0VO3fuRK9evRqs/ODgYAQFBUlj0o8zk2LKlCkwMTHB\n0aNHce7cOVhaWmLChAkYN24ctLW1oVQq6zVtbOjQodL8Yvr/4+WFhYUAgOXLl6NXr14qB5sZazLN\n/a7B2q6kpCS6evUqZWZmPrLswYMH9e4dV5Rz7NgxEkJQ+/btqUuXLtKwiBCCbG1tSQhBPj4+RER0\n9epV8vPzI09PT+nsRT8/P1q0aJG0n1deeUUaHqlYb+jQoY38qjBWOw5t1mzc3d1JCEGbN28mIqKC\nggIqLS2Vlh8+fJi0tLRICEEvvvgiLV68mBYuXEguLi7SGPX7779P3bp1IwA0efJkKahtbW1VxrP7\n9+9PK1eupMTERCIqP1VfCEEymUz6qjpMkp2dTbNnzyYrKyvq0aMHrVmzhpKTk5v0NWKsKkFU8zwv\nDw8PnDhxogn6+4wx1nq4u7sjPDy8UcquNbSFEC3+KnGs9UhISEBAQAAuX76M4uJiFBQUVHv6eXXG\njx+P4OBgHDp0CHv27EF4eDh0dHQwfPhw+Pv7Y8iQIY1ce8b+pzGzk0ObMcYaWGNmJ88eYYwxNcKh\nzRhjaoRDmzHG1AiHNmOMqREObcYYUyMc2owxpkY4tBljTI1waDPGmBrh0GaMMTXCoc0YY2qEQ5sx\nxtQIhzZjjKkRDm3GGFMjHNqMMaZGOLQZY0yNcGgzxpga4dBmjDE1wqHNGGNqhEObMcbUCIc2Y4yp\nEQ5txhhTIxzajDGmRji0GWNMjXBoM8aYGuHQZowxNcKhzRhjaoRDmzHG1AiHNmOMqREObcYYUyMc\n2owxpkY4tBljTI1waDPGmBrh0GaMMTXCoc0YY2qEQ5sxxtQIhzZjjKkRDm3GGFMjHNqMMaZGOLQZ\nY0yNcGgzxpga4dBmjDE1wqHNGGNqhEObMcbUCIc2Y4ypEQ5txhhTIxzajDGmRji0GWNMjXBoM8aY\nGuHQZowxNcKhzRhjaoRDmzHG1Ihmc1egLsnJycjPz4e5uTnkcnlzV4cxxppVi+9p+/r6wsnJCUFB\nQc1dFcYYa3YtvqcthJC+GGP/w59C2yZBRFTjQiFQy2LGWDPy8PDAyZMnsWnTJsyfP7+5q8Mqaczs\nbPHDI4yx6vGn0LaJe9qMMdbAuKfNGJMkJyfj5ZdfhqWlJfT09NCnTx8EBAQgPj5eWicsLAyDBw+G\noaEh+vTpg6+++kqljPT0dEyZMgXm5uawsrKCv78/srOzm7op7ElQLepYzBhrBu7u7gSABg4cSHPm\nzCF7e3sSQtDIkSOJiCg+Pp5kMhlpaGjQqFGjSFdXl4QQFBwcLJUxdOhQEkJQ7969qWvXriSEoLFj\nxzZXk1qdxsxO7mkzpmaEEJDJZPD19cU333yDHTt2AADOnz8PIsLhw4dBRFi2bBkOHz6Mn3/+GQDw\n559/AgAePHiAc+fOwdHREf/88w8uX74MU1NTHD9+HEVFRc3WLlY/HNqMqZmgoCBcuXIFhYWFmDVr\nFgICAiCXy7FhwwYIIXDkyBEAQJ8+fQAAvXv3BlA+ZFLxnYjQo0cPyGQyaGtro2vXrsjPz8eJEyea\np1Gs3lr8PG3GmCpfX1+cPHkSjo6OuHHjBgDA2NgYxcXFAICoqCgIIWBtbQ0A0ve7d+8iJSUFUVFR\nKs9X/jk6OhovvPBCk7WFPT7uaTOmZiqm+c2bNw+TJ0+GsbExsrKyMHfuXPj6+qJnz54gIqSkpCAs\nLAxDhgwBEUEmk+Hw4cNwcXEBAKSkpODMmTMIDAzE/v37QUSIjY1FWVlZM7eQ1Yan/DGmZgoLC6Gl\npQUNDQ14enrCzMwM+/btg1KphBAC3bp1Q3x8PF5//XVpvFupVEJDQwNKpRLff/89Zs+eDVtbW2Rk\nZKCkpAREhJKSEgDA8uXLsXr16uZsotrjKX+MMUlERARsbGwwdepU2Nra4sKFCyAiqQd97949AMAX\nX3wBpVIJAJDJZFiwYAEA4MSJE3j22Wdx69YtPHz4EJqamigpKcHw4cMBAAcPHmyGVrH64tBmTM1Y\nWVmhW7duOHr0KPbv3w8tLS307dsXqampkMvl2Lx5M0JCQmBsbAygfLx6+/btCAgIAFB+IHLfvn1S\nyBcXF2PixImYMmUKAODSpUtISUlpnsaxOvHwCGNqztPTU5r1YWxsjPXr1+PVV19F+/btkZ2djXPn\nzsHFxQUFBQXQ19eHEALJycno0KEDunTpgtu3bz9SZnBwMMaNG9fUTWk1eHiEMVYjhUKB+/fvY8eO\nHcjOzkZgYCDu378PFxcX6YAkAOl7xVmQ2traSExMRFhYGFasWIHdu3fDxMQEAGBjY9Ns7WG149Bm\nTE1du3YNV65cQVZWFkxMTDBu3Dhoa2tDqVTi3r17GDlyJADg4sWLAICYmBgAgLe3t1SGUqmEl5cX\nVq1aBaVSiczMTJiZmaFnz55N3yBWLzw8wpia6tevH2JiYmBjY4N+/fohNjYWt27dgqWlJYgIGRkZ\n0tztoUOHIjo6GqWlpVi6dCnCwsJw5coVFBUVYdCgQdDS0sLp06elqYT37t3DqVOnoKuri+eeew5v\nvvkmBg0a1MwtVh+NmZ0c2oypqcGDB0snyshkMnh6esLNzQ1HjhxBWloa7t27h/z8fADl/8tdunTB\n9OnTsWrVKhARNDQ0pDnZ7dq1Q79+/TB//ny89dZbSEtLg7e3Ny5evCjNRjlw4ABeeuml5mmsmuEx\nbcbYIyIjI6Wfzc3N8ddff2HVqlWIiIiAnZ0dxo0bJw2REBE6d+4MIyMjEBE6dOiAoUOHStfinjx5\nMs6cOQNHR0ekpaWhXbt2eOONN5CWlibt4+HDh03bQFYt7mkzpsY8PT1x8uRJLF++XLrUqlwux7Zt\n23DhwgUoFAqkpqaitLQUAGBgYICHDx9iy5YtsLW1xbhx40BEUnjb2dlh4MCBCA4Ohra2NgwNDXH/\n/n0AgLa2NgYPHowxY8YgMDAQhoaGzdbulo572oyxaikUCpSVleHgwYPo0aMHNm3aBKB8yt4PP/yA\npKQklJaWQkNDA8OGDZOGS3755ReVUKn4WQiBKVOmQEtLC8XFxVJgA4CzszPOnz+P9957D9u3b2/C\nVrLKOLQZawUuXboEAPjss8/w22+/QaFQwM3NTepBl5WVYdy4cejfvz8A4MqVKyrbV0z1Kyoqwiuv\nvIKSkhLs2bMHhw4dktaZO3cu1q5dC6D8bEvWPPgqf4y1AoaGhsjKykJ2djamTJkCCwsLnDp1Ctev\nX0ePHj1QWlqKd955B0ZGRgDKbwpcWf/+/aFQKKTZJhoaGggKClLpja9btw5ubm4Ays/KZM2Dx7QZ\nayUq3+BXCIFnn30Wd+/eRWJiYrXr9+vXD//88w8AYPHixVi/fj1sbW2RkpJS7ZX+ZDIZdHV1oVQq\nceTIEbi7uzdOQ1oBHtNmjNWp6hj12bNnkZ6eDmNjYwgh8MILL6jcK/Ly5csAAB0dHURHR0uXb/39\n99/h6+sLW1tbdOnSBQYGBhBCQF9fHyUlJfjxxx85sJsR97QZa2Uq97iB8lAeOXIkNm/eDAMDA1ha\nWqKkpAQy2f/6bEQEIoKDgwNu3rypsr25uTnu3bsHbW1t7N27F2PHjm2SdqgzPrmGMfZYqgY3APTo\n0QMPHz5ESkoKRo8ejT///BNxcXH46KOPkJycjPDwcOjr62PChAno0KED1q9fjytXrmDAgAEoKSmB\nq6urdFakEAIrVqyQDmAyVRzajLHHVl1wGxkZYcGCBfD394e9vT3Cw8MxfPhwlXWJCPb29rh586bK\n8spZIIRAYmIibG1tm6Qt6oZDmzH2RGQy2SP/w9bW1jAxMcHs2bPh7+8PuVzeTLVrvTi0GWNPpbpe\nNwB07doV/v7+GDFiBLp27coB3kA4tBljDaKm8AYANzc3LF26FKNGjWrCGrVOHNqMsQZV3bAJUD7m\nnZ2d3Qw1al0aMzv5jEjGWrnk5GTk5+dLF5MCIN3wt0JtPXDWsvDJNYy1cr6+vnByckJQUFCN61TM\n0+ZedsvHoc1YKyeEkL6Y+uPQZqyVq7h861tvvVXt8uTkZMTFxSErK+uxyvXz84OVlRX09PTQp08f\nBAQEID4+XloeFhaGwYMHw9DQEH369FE5hT4xMRETJ06Evb099PX1MWzYMHzyySfIzc19ska2IXwg\nkrE2zsPDAydPnsT8+fPx/PPPw9jYGKampipj4NXx9PSElZUVdHV1cezYMSQlJcHb2xshISG4du0a\nevToIV3zRKFQoKioCHv37sX48eMRHh4Ob29veHl5wcDAAH/88QcKCwuxbt06vPvuu03Y+sbRqNlJ\ntahjMWOsFfDw8CCZTEa6uroEgExNTUkIQZs3b653GaGhoSSEIB0dHbK0tCQtLS0CQAMGDKC4uDgK\nDg4mAGRhYUEGBgYkhCAbGxtp+40bN5IQggCQEELl6z//+U9jNLtRNWZ28uwRxto4hUIBoPxGCIWF\nhSpj4NXNPKms8m3N5HI5OnXqhIEDByI8PBypqam4ePEi3n77bWzZsgUAkJ6eDldXV5w6dQqamv+L\nH319felna2trTJw4UXr83HPPNVbT1VNzvVswxlo+d3d3qdedlJREV69epczMTGm5h4eH1COWy+X0\n9ddfExGRiYmJ9LyZmRnl5+eTEIJkMhl9++23JIQgBwcHIiKKi4sjMzMz0tXVJSEEeXp6NktbG1Jj\nZicfiGSM1ahyr7u6qYMKhQL379/Hjh07kJ2djcDAQHz88cfQ09MDEUFfXx8bNmxASkoKgPLLvLZv\n317aPjo6Gm5ubsjOzsaPP/4IAIiIiIC+vj6effZZfPrpp8jIyGjaRrdwPDzCGKtRxdAJAOzfv18K\n8GvXrqGkpARWVlYwMTHBuHHjMG/ePJSUlCA4OBh3794FAJSWlqK4uBgxMTEAAG9vb6m8goICDB8+\nHEqlEsFcdrZCAAAUU0lEQVTBwRg7diwsLCykW6GFhIRg8eLFSEpKwtatW5uu0S0czx5hjD22fv36\nISYmBv3790fv3r1x6tQp3Lp1S7pOd3R0NAYPHgwighACmpqaKCsrw549e6ChoYHx48dLy2q6TvfZ\ns2fh5uYGY2Nj3LlzB3p6es3c6vrj09gZYy2Kjo4OAODatWu4fv06XFxc4OPjg7FjxyIrKwvOzs7Y\nvXs3pkyZIl2fe+HChZgwYQIOHDgglSOEwNmzZ3H27FkpxBcsWAATExMp9DQ1NfnEoMqaazC9JfP1\n9SVLS0vS1dWl3r1709y5cykuLk5aHhoaSi4uLmRgYEC9e/emHTt2VFtOQECAdDDmwIEDTVV9xppF\n3759CQD179+ffH19ycHBgYQQ5OPjQ0REV69eJT8/P/L09CQhBBkYGJCfnx8tWrSIiIi+//57at++\nPb3yyis0efJkksvlJJPJ6L///W9zNuuJNGZ2cmhXw8PDg6ZPn05z5swhe3t7EkLQyJEjiYgoPj6e\nZDIZaWho0KhRo6Qj3sHBwSpl/PHHHySEIC0tLRJC0O+//94cTWGsybi4uBAA0tfXJ0NDQxoxYgSt\nXLmSEhMTiYhIoVBIM0gqvirPIomNjaVx48aRpaUlGRoa0ujRo2n79u2UnZ3djK16MhzazajipAEz\nMzNSKpW0adMmEkLQypUriYgoODiYhBA0a9YsaZu0tDTq2LGjSuhzaDP29J72U3DVE3ca6+QdDu1m\nsHXrVvL39yc7OzsyMTGhoKAgIiLy9vZW6Vlfu3aNhBBkZWUlbfvSSy/RM888Q7m5uWRnZ8ehzVgD\nqfopGADp6OiQrq4ude3alYQQj3wKfuaZZ6QQrzgTc8GCBfT666+TlZUVGRgYkL6+Pg0dOpQWLlxI\n+fn5T11PDu1mUNtJAzKZjCIjI4mIVE4auH37Nn399dekqalJ586dIyKSQpvHtBlrWKGhoVJoz549\nm0xMTAgAOTo6ElF5xwv//7T4ihAHQL169SIioqSkJBowYADNnj2bpk6dSsbGxiSEoI8++uip68ah\n3UwePHhAX331FQkhSFNTkzIyMmrsaVtaWhJRedibmpqSj48P+fj4ULt27UgIQc7OzrRr167mbA5j\nrUJNn4IHDhxIAMjQ0JCUSiUtXbpUekxE0vVPNDQ0qF27djRkyBBav349paenExHRkiVLSAhB48eP\nf+o6NmZ28hmRVRQWFqKsrAwApJMGtLW1oVQqce/ePYwcORIAcPHiRQCo9qSBzMxMhISEICQkBAUF\nBQCACxcuICEhoSmbwlirFBwcjKCgICQnJ4OIcOTIEcyaNUv6n1ywYAGEEIiKigIA5OXlITU1Fb17\n9wYAaGtr4+WXX0Z8fDwWL14MLy8vTJo0CZ9//jm6deuG9957r9naVi/N9W7RUikUCrKwsKApU6ZU\nO22pYvaIEIJeeOEF0tbWJplMRnv37q22PB7TZqzhVf4UXHF1wIqvwMBAIiIyMjIiANShQwciUh3K\nTElJoTNnzjxyZcGuXbvS6dOn612Pmg6MVmRnXQdGKz4xVOw/PDy8zn1yaFdx7do1aYijumlLRERH\njhwhFxcXMjIyot69e9OXX35ZY3n29vYkk8k4tBl7SgUFBVRaWio9Tk9PJx0dHZLJZHT27FmaNGmS\nFMAZGRnSvPHhw4cTEdHp06cJgDSUefr0aWlmWFxcHL3++uskhKC+ffvWu041TQ8GUK/pwd27d6cX\nX3xRaseJEyfq3CeHNmNMLVT9FFwRkhWfgiMiIqTetqurK2loaBAAmjBhAhERvfHGGwSA7O3tqz15\n5+DBgySEIHNz8yeqX+XpwQDqNT24grGxcb1Dm09jZ4ypBSsrK3Tr1g1Hjx5FcXExunTpgoyMDAgh\n4Ofnh1OnTgEA5HI5YmNj4ejoiISEBOzbtw/e3t44fvw4ACAnJweHDx+Gubk59PT0cPPmTUycOBEK\nhQJCCCxcuPCx6lX1muIbNmyAn58fjhw5AgDo06cPAEhj6mFhYU/3QtSW6HUsZoyxZvO0Q5kHDhyg\nAQMGkJGREXXs2JHGjx9PmzZtory8vMeqR3XTgwHUOj04JSVFpYzH6WnzVf4YY+wpZWZmYu/evXjt\ntdegoaGB0tJSeHt7IywsTLovZkJCArp16wYLCwukpqaqbC+Xy5GbmwuFQoFhw4bVuq86p/w9zR2X\nK3z++ecYOHAg2rVrh44dO2LOnDn1fS0YY6xFqm16MIB6TQ+uql6d5Nq64QCe+uJJixYtIiEEtWvX\njsaPH08zZ85sFbcTYoy1bbVND0al2SO1TQ9euHAh+fn5kba2tpSt/v7+KtdTqeqxxrQf9+JJiYmJ\npKWlRdra2nT79u0nfW0YY6zFqW1MvSI765oeXDEluPJVD+sa267X7JHqjo4KIeo8OhoREYHS0lLY\n2tpi7NixSE5Oxvjx4xEYGIgBAwbUZ9eMMdYidenSReV2bNXx9vaudTgkMTHxsfdbr9AODg7GiRMn\nAADGxsYoLi4GAERFRUEIAWtrawCQvt+9excpKSnSzTyTk5PRsWNH9O/fH99++y3++usv3Lx5k+9G\nwRhjj6le1x6p7o7L9+/fh4uLC4hICufKd1y2traGs7MzAEBXVxcnT57EX3/9BSsrKyQlJeHo0aON\n1CTGGGu96gztp7l4kqurKwwMDACoHhUVQsDS0rIBm8EYY21DncMjlpaWGDRoEIyMjBAZGYni4mKM\nHj0aTk5O0NTUxMKFC7F27VpERUUhPDwcQgj4+PgAALS0tDBy5Ejs3bsX7u7uMDAwQGpqKlxdXdGr\nV69GbxxjjLU2dZ5cY2RkhJycHOjo6MDNzQ1ubm7w9/eHvb09ACA0NBQrVqxAXFwc7Ozs8Oabb+K1\n116TysjJycGCBQsQGhoKIyMjTJ06Ff7+/rCxsWn0xjHGWHNozBMT6x3aY8aMwR9//NEolWjrkpOT\nkZ+fD3Nzc8jl8uauDmPsKTVmaNc5pl0xw0NLS6tRKsAAX19fODk5YfPmzYiLi0NWVlZzV4kx1kLV\nGdr9+/eHTCaDh4dHE1SnbRJCQAiBn376CU5OTggKCmruKjHGWqg6D0TWNXmcPb2K19jT0xOJiYk8\nf50xViO+yl8Lx+PdjKmfZh3TZs2rYrybh0wYYwCHdotXMd6dlZVVr4OUtV1KNyYmBiNGjIChoSFk\nMhkcHBxUts3IyMCwYcNgamoKAwMDuLm5YdGiRdId5RljzY9Du4VTKBQoKyuDQqGoV487OTkZOjo6\nkMlkiI2Nxddffw0vLy/Ex8fj9u3bSEpKgqamJogIt27dUgnugoICJCQk4MGDB8jLy8OZM2ewYcMG\n6OvrQyaTITk5ubGbyxirA4e2mqjocdd1kFKhUMDOzg6dOnWCtrY2gPJrwnh5eaFLly7YvHkzdHV1\npfUrB7eNjQ1++OEHLFiwAE5OTtL2RAR9fX106NChkVrHGKsvDm01UdHjfuuttwAA586dww8//IBj\nx449MmQyYcIEFBQUQFNTE5qa5ROEUlJS8Pbbb2PMmDGYPXu2yvqV3wi8vb2hVCpx+/Zt6Q4cAODj\n4wM9Pb3Gah5jrJ74buxqatSoUcjOzgYALFmyBIsXL5ZmlwQHB+Pff/8FUB7IOjo6KCoqwvnz5wFA\nuvpiTbZs2QIhhEpoT5gwoTGawRh7TNzTVlOVe8fr1q3DsmXLEBUVhaysLCgUCri5uQEoH9ooKioC\nUH6J3ICAgEduKnrr1i2VA5NKpRI3b96Ubm4BAK+99hqsrKzg7+8vvVkwxpoez9NWc56enggPD5ce\n29raYvXq1fD398fgwYMRFRUlLTMxMUFWVhb69esnXU4XKA/zoqIi2Nra4tatWwCAhw8fwtzcHHl5\neQCAzp07Q1NTEwkJCRgzZgwOHjzYJO1jTB016wWjOLRbvqrBDQDjx4/HxYsXpTMsa/s9amtro7i4\nGEIIyGQy2NraSrNLKuzfvx+7du3C3r17AQDTp0/Htm3bYGxs3BhNYkytcWizOslkskd+V2ZmZigt\nLa33Bah0dXUhk8mQn5//yLJevXrhypUr0NPTQ35+PoQQ3ONmrAYc2qxetLS0UFpaqvKcXC5Hbm6u\ndAei2rRr1w69evVCdHT0Y/3ek5KSYGtr+9j1Zay14tPYWb2UlJQ8cn2SrKwsmJubY/HixdDR0al2\nu4qDmvn5+YiKinqsPzYtLS2Ved+MscbFod3KZGZmPvJcamoqxo4dW2NoOzk5ST/LZI/+SRgaGkII\nAX19/UeWlZSU4Pvvv3+KGjPGHgcPj7RSVc+clMlksLGxQVJSEuRyuco4d9Xfs4mJCUxNTXH9+nWV\nMnR1dVFYWAhNTU1pGEYIoTLrhDHGwyPsCVT9g1EqlcjOzpam/dW2rqGhIUxNTaXHFT3xkpISzJw5\nU+qNV7wxWFlZNXj9GWPV49BuxaqGcVZWlspZjhW8vLykn0eMGAE7OztERkYCADQ1NREVFYWhQ4dC\nqVQiOjoaxcXFAMp77zo6Ovjwww8bsRWMscp4eKQNqDpUMmzYMGhoaEh3zKnt9zx16lTs2rULaWlp\nmDdvHo4cOYKcnBwA5YH+yy+/YOLEiY3bAMbUDA+PsAalpaWFGzduSI+FEPjjjz9U1qm4omDFNUc6\nduyI3bt3w8DAQFpnzZo1HNiMNTEO7Tag6jv+sWPHkJKSIj0eNWoUzp07p7KOTCaDlZUVtm3bhs8/\n/xxA+TDKnTt3pHV27NgBJycn+Pv7VztrhTHW8Di02wgNDQ2Vx0IIODg4YP78+di2bZtKGANAWVkZ\nUlJSEB4ejuDgYADAlStXVNZJSkrC1atX8eOPPyI3N7dxG8AYA8Bj2m1K5bHtcePGYd++fY+s4+Hh\ngZMnT2LTpk2YP39+U1aPsVaDx7RZgyAiGBkZASifvled+t4hhzHWPPgmCG1M//79cfLkSZVpfpVV\nzChhjLVM3NNuYyp60GlpafW++h9jrOXg0G5jFAoFhg0bhnXr1tV5Z3eg/O7ucXFxHPCMtRAc2m3Q\n44xbT548GU5OTvjyyy+boGaMsbrwmHYb9Djj1levXgURqdy2jDHWfLinzWrVv39/yGQyeHh4NHdV\nGGux9u/fjx07duDSpUuNvi+ep80YY09JU1MTZWVlcHJywpUrVxo1O3l4hDHGntC5c+eQmZkp3c6v\nKQ7Yc2izx5KcnIz8/HyYm5s/cmszxtoab29v5Obmon379sjKysK7777b6PvkMW32WHx9feHk5FSv\n6YKMtXb5+fkAAGtra5SVleGtt95q9H1yaLPHUjFVMDMzk+dvszbvueeeg0wmw5w5c5psn3wgkj2R\nIUOGIDIyEh9++CGWLFnS3NVhrEXhC0axFicuLg4AEB0d3cw1YaxlaqxPohza7IlUzN/u27cvD5Mw\nVo3GOvbDoc2eiEKhQFlZGY4cOcKnuTNWjca6xDFP+WNPhU9zZ6x6FXO3Gxr3tNlT4dPcGWtaPHuE\nMcYaGM8eYYwxBoDHtFkD49PcGWtc3NNmDYpPc2escXFoswbFd3NnrHHxgUjGGGtgfCCSMcYYAA5t\nxhhTKxzajDGmRji0GWNMjXBoM8aYGuHQZowxNcKhzRhjaoRPY2dNhk9xZ+zpcU+bNRk+xZ2xp8eh\nzZoMn+LO2NPj09gZY6yB8WnsjDHGAHBoM8aYWuHQZowxNcKhzRhjaoRDmzHG1AiHNmOMqREObcYY\nUyMc2owxpkY4tBljTI1waDPGmBrh0GaMMTXCoc0YY2qEQ5sxxtQIhzZjjKkRDm3GGFMjHNqMMaZG\nOLQZY0yNcGgzxpga4dBmjDE1wqHNGGNqhEObMcbUCIc2Y4ypEQ5txhhTIxzajDGmRji0GWNMjXBo\nM8aYGuHQZowxNcKh3Ub5+fnBysoKenp66NOnDwICAhAfHw8AiImJwYgRI2BoaAiZTAYHB4dHtj9z\n5gwCAwNhaWmJLl264L///S/KysqauhmMtTmazV0B1jySk5Ph6ekJXV1dHDt2DN988w1u376NkJAQ\n3L59G/fu3cOAAQNw6tQpCCFUts3OzsbIkSNRUlKCF198EVevXsW6deugqamJ1atXN1OLGGsjqBZ1\nLGatRGhoKAkhyMzMTOX5AwcOkBCCHBwcVJ7fuHEjCSFo0qRJRER0+/ZtEkJQv379mqzOjLVkjZmd\n3NNuw7Zt24YLFy5AoVBALpdjw4YNKsvL//YeZWpqCgCIj4/H3bt3cfLkSQDApUuXkJKSAmtr68at\nOGNtGId2GxYcHIwTJ04AAIyNjVFcXFyv7aZMmYLly5fj0qVLsLKykp4nIkRHR3NoM9aI+EBkG6ZQ\nKHD//n3s2LED2dnZCAwMxP379+vcTltbG4mJiQgLC8OKFSuwe/dumJiYAABsbGwau9qMtWkc2m1Q\nYWGhNNPDxMQE48aNg7a2NpRKJe7du1evMpRKJby8vLBq1SoolUpkZmbCzMwMPXv2bMyqM9bm8fBI\nGxQREYFp06bB3d0d2traOHXqFIqLizF69Gg4OTkhLi4OH330EZKTkwEA6enp8Pf3R4cOHbB+/Xo8\nfPgQ3bt3x/Dhw3Hr1i2cPn0aQgisXbsWenp6zdw6xlo3QTUdbQIghKjxYBRTXwkJCQgICMDly5dR\nXFwMFxcXuLm5wd/fH/b29ggPD8fw4cNVpvoREezt7XHz5k0UFRXhhRdewKVLl0BE6NmzJxYvXoyX\nXnqpGVvFWMvRmNnJoc0YYw2sMbOTh0cYq8W5c+dw6NAhZGRkoF27drC0tET//v3RsWNHaGlpwdzc\nHHK5vLmrydoQ7mkzVgu5XI7s7OxHnnd0dMTNmzexadMmzJ8/vxlqxlqyxsxOnj3CWC2qnsJf+fmK\nL8aaUq09bQ8PD+nkC8YYY/Xj7u6O8PDwRim71tBmjDHWsvDwCGOMqREObcYYUyMc2owxpkY4tBlj\nTI1waDPGmBrh0GaMMTXCoc0YY2qEQ5sxxtTI/wMBxqnB1tm5FAAAAABJRU5ErkJggg==\n", - "text": [ - "" + "Done. Stress: 784.894512\n" ] } ], - "prompt_number": 163 + "prompt_number": 1123 }, { "cell_type": "code", @@ -1596,7 +1531,7 @@ "stream": "stdout", "text": [ "Computing MDS embedding\n", - "Done. Stress: 666.779549" + "Done. Stress: 814.870262" ] }, { @@ -1607,138 +1542,7 @@ ] } ], - "prompt_number": 164 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "fig, ax = plt.subplots(subplot_kw=dict(axisbg='#EEEEEE'))\n", - "N = 100\n", - "\n", - "x, y = np.random.normal(0, 1, (2, 200))\n", - "#print x\n", - "#print y\n", - "\n", - "scatter = ax.scatter(np.random.normal(size=N),\n", - " np.random.normal(size=N),\n", - " c=np.random.random(size=N),\n", - " s = 1000 * np.random.random(size=N),\n", - " alpha=0.3,\n", - " cmap=plt.cm.jet)\n", - "ax.grid(color='white', linestyle='solid')\n", - "\n", - "ax.set_title(\"Scatter Plot (with tooltips!)\", size=20)\n", - "\n", - "labels = ['point {0}'.format(i + 1) for i in range(N)]\n", - "tooltip = plugins.PointLabelTooltip(scatter, labels=labels)\n", - "plugins.connect(fig, tooltip)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "html": [ - "\n", - "\n", - "\n", - "
\n", - "" - ], - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEPCAYAAABbbZ8rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd0XMd97z/3bu+LBRa76EuAJECCVaRIihIptqhGkiW/\nI8uKbImynafEsR3HOslzOVFJ4jiJ7Wcr9nMSW5GcxHKJI0u2rGKLpEiqUWIDCwpB9A4sgMX2euf9\nAQEiBIAACJAgqPs5h+cQd+6d+c3s7Hfn/uY3M5IQQqCioqKisuCQ59sAFRUVFZULQxVwFRUVlQWK\nKuAqKioqCxRVwFVUVFQWKKqAq6ioqCxQVAFXUVFRWaCoAq4y5zQ3NyPLMrt3755vU/jsZz+Lw+Eg\nHA7Pab4+n49FixbN6JlHH30UWZY5cODAnNoyX8iyzPbt22f0zAMPPIAsy7S2tl4kq2ZGc3MzWq2W\nf/iHf5hvUy6ID5WAK4rCL3/5S/7gD/4An8+H0WjE4/GwevVqPvOZz/Cb3/zmktpzvi/A5SSCMGzr\nuf8MBgOLFi3i5ptv5qWXXprwGUmSZlXm008/jSzL/PjHP76g57u7u/n3f/93du/ejdVqnZUtH0SS\npHH1m629M+FSlnU+PtgGU/1ITdRul4Jt27Yhy+Plzufzcfvtt/Od73yHRCJxye2aLR8qAb/vvvu4\n++67OXjwIF6vlz/5kz/hzjvvJCcnh//8z//kn/7pny65TZN15pHr89HZJ0OSJB599FEeffRRvvCF\nL2A2m3nllVe49dZb+bu/+7uLWu6F8K1vfYtkMsnnPve5ObYI9u7dy549eyZMu5Sf2eXUP6bD3//9\n31NTU0N+fv4lL3uytvr85z9PT08PP/rRjy6xRbNHO98GXCp+9atf8bOf/QyHw8GZM2dwu91j0gOB\nAEePHp0n68YzskD2clso+9d//dej///Hf/xHnn76aR588EEeffRRPv3pT+PxeOa8zAtpg4GBAf7l\nX/6Fm2++mbKysjm36Xzuk0v5mV1u/WOEyezyer14vd5LbM352bZtGytXruSb3/wmDz30EBqNZr5N\nmj7iQ8LDDz8sJEkSX/nKV2b87Kuvvipuu+02UVZWJkwmk/D5fOLjH/+4OHz48Og9Q0ND4h//8R/F\n9u3bRUFBgTCZTGLJkiXi7rvvFnV1dWPye+qpp4QkSRP+e/TRR8UjjzwyafrTTz89Jq93331X3HXX\nXWLJkiXCZrOJ9evXi0ceeUQkk8lx9SgpKRE+n0+kUinxta99TWzevFmYzWbx6KOPTtkGkiQJWZbH\nXU8mkyInJ0fIsixeeuklIYQQTU1NQpIksXv37nH3h0Ih8aUvfUmsW7dO2Gw2UVFRIe69917R2Ng4\n5r7rr79+0jZoaWmZ0t6///u/F5Ikieeee27M9draWiFJkvijP/qjMdcbGxtH8z948OCYtL/8y78U\nkiSJffv2jV4bacuZ2Dvyub722mvi5ZdfFrfddpvIyckRJSUlYvfu3WJwcHDKes2kbZLJpHj88cfF\npk2bhMPhEKWlpeLOO+8UR48enTTvn/70p2LXrl3C4/EIj8cjdu3aJX72s59NeK8kSWL79u1j2mQy\nu0a4//77x9k50l8eeOAB0dbWJu6//36xZMkS4Xa7xc033ywOHTo0ruxUKiV++ctfij/5kz8RS5cu\nFWazWfh8PnHHHXeIV199dcI2m6j/jvDP//zPQpKkSet6ufKhGYGvXr0agBMnTszouc9//vN873vf\nw+VyjfrOOzo6eO2116ioqGDdunUAVFdX87WvfY3rr7+e2267DZPJxIEDB/if//kfnn/+efbt28c1\n11wDwNq1a3nkkUd47LHH8Pl8PPDAA6Plbdu2DSEEQ0NDfPe732XNmjV85CMfGU1fu3bt6P+/9a1v\n8Vd/9VcIIVi/fj27du3iueee4/HHH+c3v/kNb775JgaDYfR+SZJIJpPccccdvPzyy+zatYvPfvaz\nlJaWzrg9R1AUBSEEQogJfYzn0tHRwdatW2lqamLz5s388R//MU1NTfz3f/83v/nNb3j22WfZtWsX\nALt37yYrK4vnn3+ej3zkI6xZs2Y0H4fDMaVdhw4dAmDVqlVjrpeXl1NQUMC+ffvGXB9xh0iSxJ49\ne7juuuvGpJlMJjZv3jzmmXNfyWdi789+9jOefPJJfD4fH/3oR3n22Wd5+umnOXbsGMeOHZuybtMp\nKxKJcP3113P06FFWr17N7t276e7u5oUXXuC3v/0tP/rRj/jEJz4xJt+HHnqIf/u3f6OgoIDbb78d\nWZZ58cUX+fjHP85rr73GD37wg/Pa9cUvfpHnnnuO/fv388ADD+Dz+Sa8bzJXRnt7O9u2bSM7O5vb\nbruNtrY2nn/+efbu3csvfvELbr/99tF7P/vZz/LDH/6Q0tJSNmzYwF133UVnZydvvPEGr7zyCjt3\n7pyyHc9lxYoVALzzzjt87GMfm9Gz88r8/n5cOuLx+OhI8Z577hE///nPpxzJPf/880KSJLF69WrR\n3d09Ji2TyYiurq7Rv4eGhkR/f/+4PE6dOiU0Go1Yv379uLQPjmDOpbm5edJRrBBCnDhxQmi1WrFs\n2TLR2to6xq6vf/3rQpIk8fjjj495ZmSEtHnzZlFfXz95xSdgshH4k08+KSRJEjqdTvT09AghJh+B\n/9Ef/ZGQJEn8n//zf8Zc//3vfy8kSRJlZWUikUiMXh95U/nxj388I1uFEGLp0qXCYDAIRVHGpX3y\nk58UkiSJ06dPj1675557hNvtFmvXrhVbtmwZvT4wMCBkWRa7du0ak0dJSYlYtGjRmGtT2TsyAtdq\ntWNGiYlEQtx0001CkiTx/PPPT6t+U5X11a9+VUiSJO67774xbVBVVSUsFovIysoSfr9/9PrIZ7Bi\nxYox/XhgYECsWrVKSJI0bmQ7Uf8dqeP+/fsntOt8I3BJksRDDz005v79+/cLSZJEcXHxaN+Ix+NC\nr9eLwsJCEYvFxpUx0fdwqhF4e3u7kCRJ3HjjjZPecznyoZnENBgMPPXUUxQVFfHzn/+ce+65B5/P\nh8fj4b777uPVV18d98zf/M3fAPC///f/HufblWV5jC/PbrfjcrnG5VFZWcmdd97JkSNHZhTKJqbw\nbf7d3/0dmUyGL3/5yxQVFY2x63Of+xwWi4Wnnnpqwmc/9alPsXjx4mnbcq5Njz32GI8++igPP/ww\nlZWVfPrTn0aSJB577DFyc3Mnfbavr49nnnkGWZb54he/OCZt165dVFZW0tjYyPPPPz9juz5IMpmk\noaEBn8834WhvZHR27iTk3r172blzJ7t27eLQoUPEYjEA9u3bhxBixiO687Fz584x+en1eu644w4A\nqqqqZp2/EIInnngCSZL4/Oc/P6YNVq1axfbt2wkEAvz7v//76PXvfOc7AHzyk58c04+zsrL45Cc/\nCcC3v/3tWdt2PiRJ4s/+7M/GXNu6dSurVq2ira2NX/3qV6PXrVYrDodjzBvmCBN9D6ciPz8fk8lE\ndXX1zA2fRz40Ag7wh3/4h5w9e5YDBw7wyCOPcOuttxIOh3nmmWe44YYbxkQrCCGorq5Go9Fw1113\nTSv/48ePc//997Ns2TLsdvtoyN3//M//IEkS9fX1c1aXkydPotFoOHPmzGhkyMi/b37zm3g8Hlpb\nW8eFRkmSxC233HLB5T722GM8/vjjPPHEE8RiMW688UZeeOEFvvzlL5/3uTNnzgDDLqCJhH7Eprq6\nugu27dyyFEVhyZIlE6bv2LEDeF/AT506RV9fHzt37mTHjh2kUqnRMLi9e/eOeWYuuPvuu8dd27p1\nKzDsRpgtnZ2dhMNh3G43V1999bj0idq6rq5u0r4xl5/N+cjPz6eysnLc9ZtuumlM+QaDgfvuu4/q\n6mqWLl3KV77yFV577bVZhQFKksTixYvp6OggFApdcD6Xmg+ND3wErVbLddddN+rjHBoa4ic/+Ql/\n/ud/zve//31uu+02brjhBvr6+ojFYlRUVEwrsmLv3r3ceOON6HQ6duzYwQ033IDT6USj0bBv3z72\n798/px2jubmZTCZz3vA9SZLo7e0dM0IvLCy84CgASZLIZDIX9OyIMG3cuHHC9JHrcyFgIyPOyd5i\nCgsLWbx4MQcOHEBRlFEh37lzJ7m5ueh0Ovbs2cONN97Inj17cDgcEwrhhTLR24/ZbAYglUrNOv+R\nNly/fv2E6RO1dXt7O2azeUIBXbZsGVardU4+m/Mxmb0bNmwAhudQRvjWt77Fxo0beeKJJ/jGN77B\nN77xDSwWC/fccw/f+MY3yM7OHpfPVG+1iqIACys080M1Ap8Ih8PBn/7pn/K//tf/Ahid3HK73ZhM\nJurr6+nu7p4yn69+9asoisIzzzzDCy+8wHe/+10ee+wx/vqv/3rC17zZUlhYiNlsRlGUSf9lMpkx\n4g3MW4jUiB0jk4sf5O233waG6zVblixZgkaj4ezZs5Pes2PHDgKBAO+++y579uwZXVlpsVjYsGED\nv//97+nq6qKuro6tW7cuqC/1SFsfPnx4wvSJ2rqwsJBoNMrp06fH3V9dXU04HJ6Tz+Z8TGbvSJ8p\nKCgYvabVarn33nt5++23aW1t5T/+4z9Yv349Tz75JF/72tfG5THVAiIhBA0NDRQWFs75oq+LyYde\nwEcY8ZtptcMvJZIkUVlZSSaT4dlnn53y+draWkpKSsZEjMCw73fPnj0Tdh6NRkM8Hp8wP51OBzBp\n+po1a4hGoxw5cmRK2y4Hli5dCsCxY8fw+/3j0kdWc1ZUVIxem6oNJkOv11NWVkZzc/Oko66RaJdX\nXnmFgwcPjvFJ79y5kxMnTvCzn/1s9O/pcKH2XgjnKysvLw+LxUJfX9+E/WOitq6oqEAIwcsvvzyt\n+y/Erqno7Ozk1KlT466P2DRZ+YWFhdx33328/PLL5OTk8JOf/GR0DmOEffv2nfftsaOjg3g8zvLl\ny2ds93zyoRHwn/zkJzz77LOk0+lxaWfPnuWHP/whkiSNCRUb+SX/13/913GjcEVRxly79dZbaW5u\nHjOC8fv9PPLII5N2nPz8fKqqqia0yePxIEnSpAL9la98BZ1Ox2c+85kJFyBFIpFJR7vzQU5ODvfe\ney+KovDEE0+MSduzZw+nT5+mtLR0dDIPGF2tN9nI7HwsW7aMZDJJc3PzhOnbt29HkiT+3//7fwwN\nDY0R6R07diCEGN0fY7r+79nYO1POV5YkSXzhC19ACMH3vve9UdcADM+d7N27F6fTOWabhi984QsA\n/Od//ieDg4Oj1wcHB/mP//gPJEniz//8z2dl11SM2Hsu+/fv5+TJkxQXF48Ojvx+/4R9u6enh3A4\njKIo6PX6MWkNDQ3U1tZO+F0DRt/WFpqAf2h84IcPH+a73/0ubreb9evXU1paSiqV4vXXX6e6uhpJ\nknjwwQe5+eabR5+5/fbb+exnP8v3v/99KisrueGGGygpKaG7u5t9+/bxqU99anRl4kMPPcQzzzzD\nNddcw65duzAajTz77LO43W7uvvtufvGLX4yz6YYbbuDJJ59k69atbN26FavVyvXXX8+WLVvQarXs\n2LGDPXv28Ad/8Ads3LgRo9HIHXfcwcqVK1m9ejXf/va3+Yu/+AvWr19PUVERt956KwAtLS0cOHCA\nLVu28OKLL16aBp4G//AP/8Cbb77J3/7t37Jv3z42bNhAc3Mzv/71r7FarfzgBz8YHcHBsE/U5XLx\n05/+lMHBQVauXIksy3z+85/Hbreft6xNmzbx/PPPU1VVNeGqyezsbFatWkVVVRWSJI0R6WuuuQaT\nyURvby+5ubmjMcJTMRt7Z8pUZX35y1/mxRdf5Mc//jFVVVVs3bqV3t5efv3rX5NOp/nBD34wxk+8\na9cuPv3pT/OjH/2I1atXc9NNNyFJEi+99BLt7e185jOfGX1rOR/bt29Hp9Px7W9/m5qaGsrLywEm\ndGt8kJ07d/Lqq6+yceNGrr32Wtra2vj1r3+NwWDgiSeeGBXl9vZ2rrnmGpYtW8batWspKCjg7Nmz\nvPHGGyQSCb761a+OcxXu3LmT1tZWmpubKS4uHlf2yZMngcnnaC5b5iV4cR5oa2sT3//+98Wdd94p\nysvLhd1uH10J+JGPfGR0FeFEvPzyy+LWW28VPp9PmEwmUVpaKu677z5x7NixMfe99tpr4qGHHhJe\nr1esWLFC7N69W7S0tIhHH31UyLI8LjbW7/eLP/7jPxY+n0/o9Xohy7J47LHHRtObm5vFPffcIwoL\nC4VWqxWyLI+L+62trRWf+MQnxOrVq4XFYhG5ubli7dq14ktf+pI4cuTImHt9Pt+42OXpMlkc+ERM\ntRLzL/7iL8RVV10lrFarKC8vF/fee69oaGiYMK8DBw6Ibdu2CbfbPWrDdFZiDgwMCJvNJm655ZZJ\n7/nSl740Gvv8QW688cbRNQMTMVlbns/eyfqBEOdvs8mYqm2SyaR47LHHxKZNm4Tdbh9difnBfnEu\nzzzzjNi5c6fIzc0VHo9H7Ny5U/z0pz+d8N7J1jH86le/Ehs3bhQul2tcv3nggQfG2Xlu3Ts6Osas\nxLzlllvEO++8Myb/QCAgHn/8cbFjx47RVc/XXHON+OpXvyr27Nkzoa0+n++8fWflypXC5/OJdDo9\nadtcjkhCXPhmCvF4nOuvv55EIoHRaORjH/vYuBhfFZX54i//8i/51re+RV1d3QXFvatcGpqbmykt\nLeWBBx4YE5t+qdi3bx87d+7ke9/7Hn/6p396ycufDbPygRuNRvbt28fx48fZv38/Tz755Hln/lVU\nLiVf+tKXMBgM/PM///N8m6JyGfPEE0/g8Xj41Kc+Nd+mzJhZT2KOxK+Gw2HS6fRFCZlTUbkQPB4P\nDz74ID/+8Y/n/EAHlSuDlpYWXnjhBb74xS8uSO2a9SSmoiisXbuW06dP853vfGdc3LGKynzyve99\nb1xkg4rKCCUlJXOyeGq+mJUP/Fyam5u55ZZb+MlPfjJmxzwVFRUVlYvDnIUR+nw+brnlFg4dOjRG\nwMvLy0f3wVBRUVFRmR5lZWVTzinOagTu9/vRarU4nU76+/vZvn07r7zyCnl5ee8XIEkMDAxcaBGX\nPd/85jd5+OGH59uMi8aVXL8ruW6g1m+h43K5pty/ZVYj8K6uLu6//34ymQxer5eHH354jHirqKio\nqFw8ZiXgK1euvKzOkVRRUVH5MPGhWUp/sRjZx/lK5Uqu35VcN7h86pdMJgmFQgghMJlMWCyWOcn3\ncqnffDJnUSiTFnCF+8CNRuMl2X1uvriS63cl1w3mv37BYJDapibq+vrI2GzIsowSDlNsNlP53mlY\ns2G+63exueg+cBUVFZWJ8Pv9vHLiBKK0lOzly9G+t0mZEIK+nh5+W1fHdaEQS9UtDmaFKuAqKipz\nSjQa5XcnTmBauxZrVtaYNEmSyPJ6sblcvH7oEFazeXQLWpWZ86HZD1xFReXS0NjSQqawcJx4n4tW\nr8e+fDnHm5ouoWVXHqqAq6iozBmKonCqs5OsaWypYc/OpldRCAQCl8CyKxNVwFVUVOaMRCJBQqNB\nbzJN637J6VQ3GpsFqoCrqKjMHxc3CO6KRxVwFRWVOcNgMGBSFBLR6LTuF4EANpvtIlt15aIKuIqK\nypwhyzKV+fkMtLZOee9QXx95Oh0Oh+MSWHZlogq4iorKnFJaUoKhs5Ngf/+k9yTjcULV1aye4MBp\nlemjCriKisqcYjKZuGHNGlJVVfQ0NJBKJEbTlEyG/o4O+g4dYmtxMV6vdx4tXfioC3lUVFTmHJfL\nxW0bNnC2pYXTBw+StlhAkhCRCGUOB8sqK8nJyZlvMxc8qoCrqKhcFKxWK2sqK1lRXk4kEkFRFEwm\nE0ajcb5Nu2JQBVxFReWiotVq1YnKi4TqA1dRUVFZoKgCrqKiorJAUQVcRUVFZYGiCriKiorKAkUV\ncBUVFZUFiirgKioqKgsUVcBVVFRUFiiqgKuoqKgsUFQBV1FRUVmgqCsxVRYsQghCoRDBYJBUKoUQ\nAq1Wi9VqxW63o9VqURQFSZKQJGm+zVVRmXNUAVdZcPT399PaXMdATwMmfRqHFQw6kCQYCMc41jlE\nx0CUiGLAnF2Iw5WFQacnx+rA63BRmF+gHiKgckWgCrjKgmFoaIjTVW8ipbrw5em5apMLrVYDQDgS\noamjlaguRsE6B6UWD9FYhq7eMP0xgWXJWlI2GzUDAY4dfYN8k51tGzbPc41UVGaHKuAqlz1CCM7U\n1dDVfIgVZUbyPPmjaYpQaO/ooCnQi6XIg9dVhMSwu8TqgFwvhEMxqmsPELEvxbdmLbqlpfR39VDf\n3U4qEKJiaTmyrE4HqSw8ZtVr29ra2L59O5WVlWzbto1nnnlmruxSUQFAURSOHz1EpPdNrl/vJs+T\nNSat9mw9Lakg7soy7K6sUfE+F6vNxNXr88nXNnLm9b0k4wly8r04fXmciPfx9tHDZDKZS1ktFZU5\nQRLiwo+F7u7upru7mzVr1uD3+9mwYQNVVVVj/IuSJDEwMDAnxl6OGI1G4vH4fJtx0Zjv+lUdewei\nJ7iqMn/cKLmuoZ4+XRr3oqIJhXsi2tv81Pc6KN+ygwprLmcTgzQfr8aXNLDxqvUXowrzxnx/dheb\nK71+LpeLqeR5ViNwr9fLmjVrAMjJyaGyspLDhw/PJksVlVHa29qID04s3r19vXQrsRmJN0BhUQ7F\n9n5aTpwAhgcYvjXLacwEaW2b+iBeFZXLiTlz/J09e5bTp0+zYcOGucpS5UNMLBaj/vQBVldkjxPv\nRDLBme42sn0FMxLvERaV5SIN1BALRYBhEc9fVc6hhuorekSncuUxJwIeCoX42Mc+xv/9v/8Xi8Uy\nF1mqfMhpqK/B50ljs5rGpfX29SFn29Ff4NFcsiyzbImDUG/H6CuqyWpBLsimubVlVnarqFxKZh2F\nkkql+OhHP8onPvEJ7rjjjgnv+eY3vzn6/61bt7J169bZFnvZoNVqr+gz/uajfoqikO2ysih/OxrN\n2DGGQKBPZLM8x4lGe+HdN88OIuliIK3DaDEDULJ8DbG2XgwGwxWx8EftmwuLAwcOcODAgRk9M6tJ\nTCEE999/Pzk5OXz729+euAB1EnNBMx/1a21tJdjxKmsr88elhcNhjnU24Fm2eNbl2KRlvFLXypIN\nm0avNb1+hBvL1+F0Omed/3yj9s2FzUWfxHzjjTf4r//6L/bu3cvatWtZu3YtL7/88myyVFFhwN9B\nrsswYVo0GkW2zM2oy2TSE+vvHHNN47AwNDQ0J/mrqFxsZuVCue6661AUZa5sUVEBIBToxpE38VxK\nOB5FN4Ff/ELQaDXoiROPxjCah/PU260MDgYpmZMSVFQuLuryM5XLCkVRiMcCWMwTj8AzSgZJM3f+\naatFEAuHR//WaGQy6qBEZYGgCrjKZYWiKMiSmHQSUZY0oFzwtM04tBoJJfO+YAsh0KjL6lUWCOpe\nKCqXFcPCPbmAmvUGeuLhSdPPJZ1OkUqlhvOVZQx6PZL0gbzFcNoIyXAMu8k1YX6xWIxUKoUsy5jN\nZnX/FJV5RxVwlcsKjUYDko5kMo1eP757WiwWlF7/pM8nEgmGgoOEI4MgpdHqh5f6ZBRIJwV6nRm7\nzYXNZgcglgCLXj/6fDoQxu7zAcOj8Z6eHurq2ujoCJBIyIAOUNBoErjdNpYu9VBUVIT+nDxUVC4V\nqoCrXHbYHB6GQgO4s+3j0sxmM0STpNMptFrd6PV0Jk1vXzfx5CA2h4a8bBNanWbMs0JAIpYgGOxg\noLWLbOMKQlEotlsBSCWTEIzhdDrx+/28/vop+vsNmEyF2O2VaLXvi7SiZIhEghw40IlWe4BNm3ws\nXlx2RcSPqywcVAFXueywZ+UzONQ+oYBrtVryHdn09g3gyvMAEItF6eptweoQFOY7mExDJQmMZgNG\ns4FkIkU4PIA/HBsV3b7WTpbmFnDmzFneeqsTm205BQU5E+Ylyxqs1iys1iySyRj791fT2trHli3r\n1NG4yiVDdeJdYSSTSSKRCLFYbMGGeOblF9DRN7ntXncuid5B0unUe+LdiNurJSvbOql4fxC9QYdA\nxlBgof5sDYl4nFhzN/Fwkjff7MfjuQa7fWLxHpeX3kRh4Tra2pzs3fvOqN9dReVio47ArwAURaGr\nq4u6tiZ6okEkvQ4UBW1GUO4pYlFxCVardb7NnDYOhwONKZ8+/xDuHMe4dLPZzCJnLk3N7cS0CXLy\nhkfVMyGdVgjFJFZdU0FnRx/HXutijcHDqVMRvN4NY9wz08XrXUJnZ4pjx06zYcOaGT+vojJTVAFf\n4ASDQQ4cf5eoTYejPI9Sd+WoSyARi3O2rZNTR15nZW4xlRXLFoyPtqR0FTXVvyXbZZsw2qMwv4DT\nB2pQCsFkLppx/s2NARaXZqE3DqDLJIjUnqLBvB6n89oLEu8RvN5yTpx4G5+vl9zc3AvOR0VlOqgu\nlAVMKBTi1aNvoV1eiG/DKrJy3WME2mAyUrC0lJLr13Ey2sPxUyfm0dqZkZ+fj965nLMtfROmJ5IJ\nchwyWckkg539zGRHn6HBGK2DJgw2C2feqUXf0stVq700tySxWme3B8qwb3wxJ040ziofFZXpoAr4\nAkUIwcHj76JdWoDWYqKnp4euzi66Orvo6ekhGAySTqUB0Op0+K5eRW3UT3t7+zxbPn0qV6yjucdE\nn3/83iT+vl7ceUZWLSvGOhSlp7aVZCw5ZZ7xWIpjVUG6QjJNZ9ppP9NBJJWhtSWKIulIJBKzttvh\nyKWtLUooFJp1Xioq50N1oSxAEokER48d42BLAza7FkJxMJhBfi9sTslAXy/Eo1h0GordLtw52eRU\nLOL06QYKCwvntwLTxGg0ctXGGzn29m9ZLYbIdb/vDx8K91JQakan1bJsaSF9fQEaattQrEYsOQ6M\nNhMa7dgwwkgozttv9lDbKWFbosO3tBDtyh0M9Qf57XdeY3HOSkKhMAbDzPzpH2T4LSibQCAw5nhB\nFZW5RhXwBUQymeRETR2nOvuo9/djvnojrtJF530mEY1SM+intquW4iw7IhVlcHCQrKys8z53ueBw\nOFi76VaBy94mAAAgAElEQVSOvft7CgPdLC3NRZIgkYxgMrtRFIVoJI5er6VykYdkIkV39yD9jV0o\nWi2yfljEezuC1DemcBcvpaxQZvXNV2M2GCENslaLviCf1FCQSDRIDtmztluWrdTUnMXf2UoqHkWW\ntThy8yksLsZkmpvNuFRUVAFfIHR3d3PwZC0RVyE5V++g/s2XyPZNvWeewWzGYC4mkymkta+TcDjA\noppqrt187SWwem5wOBxs3no7NaePc/DwSYo8oChp2tt66R0cQGOUkTUSmZSClJbwZudQsTifVDJN\nX1+YpvYoJvNS7v/0GrRaDb99t3Z4xed7pDMZ0OrR6TUkktFZ2zswMEDD6RNkuk+zdlMpRoOeTEah\nt6GZt0++RU7ZCpavWjvGBhWVC0EV8AXA6Zpa3m7vx1G+Hq8ji3QqhaSRZ7QXh0Yjk+UtJDYUZs+7\n9TizsqlcVnERrZ5b9Ho9q9duoK9vEUfeOcDBt86wYYuTohInWdlm9HoNSBAOxqht7OBIVSsmez6y\nKYeC5WspKHKPtleWRkN/Zz8UD+edjCdJtvuxF1UQGZhd7Ly/z0/PmeOUOWQqinLId7+/r4o7y05F\nRuFkcxWHwyGuvvZ6dT8VlVmhCvhlzsmaGg51hfGuvRatbji8TZZlFCVzQfkZ9Eayl1/FW10hMqKa\nVcuXz6W5Fw0hBENDQwwMDHC6pZV0dgmNQRt1h6JopQBGE5jNesx2E0bHEkJSmlTCxA3XbxwnkhtW\nlXLw6BmGNEto7Wog2NxDod6MRqtHq7lw/3csFqOrvoplXhuBYJws2/ivl0Yjs6asgKNnGzlTm0vF\n8soLLk9FRRXwi0gkEsHv99PbO4jfP0QqpaDRSLhcNrxeF9nZ2djt45eLj9Dc3MLbnUPkrd40Kt4A\nskaDWW8hNjSEyTF+ocv5SA4GsTkW41hcwaGqt7GZW1g0DVfMfJFIJGhtbePEibMMDqbo6OwnabIi\naRcDRow2mWQiQSgRIxSPkmvSUVDgpny9k7p3W+ntGcSbN9anbXdYuGnrKrRpM8RsOLd7ea6vnnAo\njs08+ecxFX093eQaJQw6HYoIkmU3T3rvsiI3B8+cYEl5hepKUblgVAG/CPT393PyZD1NTf0I4UCv\nt2I05iPLGlIphcbGKLW13QhRS0GBhZUrF5OfP/b8x0gkwsHaRnLXXDdGvEcozFtES2snppXTF/BU\nLA79UbKW5iFrNORWruPg8ddx52Rflis1m5ubeeWVt+ntjSJLMrKcodPfRl5FNvFwlIH+GDmeXLLc\nLmRJRghBKBDm4Iv9OLO7WFThpKmlc5yAw/Cuh1aTiQKDG4DiRSZe39uPd9mFtYOiKAS6W1nhtpLO\npNFo+slxLpn0fpNBj0v209XVtWCiglQuP1QBn0NSqRQnT9Zw7Fg7JlMRHo9vQh+nxTI8yhNCEAgM\n8OKLpygvb2P9+lWjEQqHqk4iFS7BYJp4FJeTV0TDoVqSZTH05rFRDalUingiQTKRQFHe25dD0hBs\naKHI7mFkwxCDyYxctJR3Tpxix+ZNHyxi3kgkEuzZc5A33jiJ3WqktNiMw24ilVKQLDaKFzuIRHX0\nD3aSCHcS6NeSlePBZjNhc9iwOWyEhkIce70DTWqIjRsqp/Q15+WbScYGsNkuTMCTyRRaJY1Op6Vn\noIPKUhN63fm/XllGmUh4enubq6hMhCrgc0QsFmPv3rfo6dHj9a5Bo5m6aSVJwuHIxm530dTUSlfX\nfm66aTOJRIKmGBRUTh4iqNXrWbKokrojJ/FevQpZpyMYDBIc6gURx6AHg15C/97xY4OtnWQau0kV\nV3Dy+H6crmLcuXnkFPpo6m6jr68Pt9s9Z+1xocRiMX7+819zpq6VyorcMbHfiUR09Dg1i9lEJGrG\nYhe4JJme3nZi0SzcnmwkJGwOG2bLEo7uPcKhN+rYeG35eUU8MJBi9ao8/P5WcnKKZ2y3EAIJSCTj\nSFILlWW+KZ+RJAkhFuaGYyqXB6qAzwHJZJJXX32LwUEH+fkz35dDkiRyc0sIBMy8+OKbuPKsGPMn\nf/0eIbfQRzqZ4uhL+xFePblFDvLdZgz690eRiUiMweZOHH1hNm/bgMFkJJ1W6Btooam+Eb0pD0tO\nAXXNrfMu4KlUil/+8gUa6lu55uoSjMax27JqdRrSqZHJWwmnPYeBoS6y3ToKC8309gzS2yXIzXMj\nDd9ClquAMzVpdPoG1m+cuE3bW/vQpAu47Q+v5rnn3qK1NUI0nWQwFiKWiiME6LU6HEYrLosDd3Y+\nBsPYNyOdTkdCUejqr+GmzVlYTMYp6xtKpLGYJz68WUVlOqgCPgccPnwCv99EXt7MxftcnE433d1R\nfvfOEbbtvm7K+6PRKEPRIL4sLVI8xNDpHgJeF7JBh1AEqcEQ2lCCotxcvGtWoX3vlV6rlcnLdZCX\nC919vXR0KwS6/KxbsXxeF5m8/fa7nD7VyOYNi8aJN4DZZECX0RCNJDBbDOj1esxGJ4GBAM5sE7ke\nM12dAYIBEw6nlUB/BHeWC2++h9NV9eQX+sl/b3/vSDiG0EQ4dqqOljNJtmxaR3tnF1FjnCPdNZjd\na3EUL8OuN4MkkUknGYoG6Q31U3vmMPkmK6WF5RiNwwKsKCliUj+L8oKUFkw9KZxKp+lOaLkuL29u\nG1HlQ4Uq4LMkFApRXd1Pfv7qOclPpzMQwE13Ty+FhQWT3hcMBmlpPEqxV8K1pBQY3n1wqH+QdCyN\nLEsY3AU4lmWd13XgdTtw2lO801bDoUNvsG3brjmpx0zp7e3ld797i2VL3cgaQSQSQSCQZQmdVo/u\nvYncvOwsOrsHMZcNh/vZbQ6CQRj0B7BnGcjNNdLW3ovRbCDYE6W8pARZlslyFfHG/iY2XZeht7GT\neHs3K1doGfztcXzuRfzi6acY9JZTds12dm2wc+pkM+HoIE6dEVnWotUZ0DrcmB1ulPwl9PS10VN/\nmOUeH1qNhlSqgT+8fTmJliTpdAat9vyRJY2dfnIWVaqHP6jMClXAZ0lnpx+nc9GcLcgIx0LYPYup\nr+/E6/Wg1Y7/iEKhEC2NR1hcrMdqef9V3WAykls48xGd0aBj8fIius8coqbGy7JlK2ZVh5mSTqf5\n5S9fZLCnh7g9RN8g6GQJCYGCREIRCFmH0e7E5nSiD2jo6QjgKRjeOdBud6CN6Qj092M0g8mYpr6q\nleLsfKzW4TcKk9nMmZoU6abfcZ3PiRIXOLQONq/exJ6WforWXscik5Wus9XEvEWsv7qCjvZumpur\nSWfsaLVWDAYzGlmDEAoai5NIno8DDQe4frGDu+7ahd1up9qo4XD9u6xb7EU3wWcH0NjZR7twsrFy\n1SVr40uNEIJEIkE6nUan06HX6xfMVsYLCVXAZ4Hf7ycaVWa9Bem5DMYimHKKiaejDAwMjNtTOp1O\n0dRQRVmRbox4zxabw47VY2ew+206Ha5xYY0XAyEETQ0NnHx9L2feqmLV4ixKsyY+VSeTUYjEBhgM\n9GHVmRnsk2kJ9uLwWLA7zZhNZjSyls72PrqaBhnqkynd4qPfH0SSoLOtj9jZXvrkKBlXMQXeEpzO\nbF5s8SOXrsHhHN4bxmYy0tTbRpskU7a0nKLifAYHBwkMRggM9ZNKZpBliewcI4sX27Ft+RiB2mME\ng0HsdjvLV66mVqPltep3KbIKCnOyMBn0ZBSF3oEhmgfjZBwFXL3t+llvmnU5EovFaGttoaPhBHIm\nikaGdEYgGewUlq2isKj4iqz3fKEK+Cxob+/CbC4E5u4IrUQ6hVZnwKTT09nZP07AW1sbcTvj2K1z\nuxmVTq8jkZG4bpWLd04cIDv7zov6RYtEIpw49CYGfwuuZIRsWzYel3HSI9E0Ghm72YTdDOFYAklK\nkdG4SPSmaWzqRiDQSDI59iyWrfdRXTuINl1CMpgiHo8TOdvKmsJKgjEPWW4vOdk5dAwGiXsWk+t8\nvy0lWWJRjouarhYCuR6cTifuHDfunMkneLXL1nHw1Nt8JDsbk8lExfJKikp8tLU083ZjDalECI1G\nhy23iEXXVeB2u6/I0eiZuho66g5R6BBsLsvCes6iqKFQlNa2g7xRrWHRiutYVFo2j5ZeOagCPgs6\nO/upqChjLgVcEcNRKQa9kUCgazg87b0v+9DQEIlwC4uXuqbIZeZIskxGCBx2M8XeILU1Vaxes2F6\nNisKiUQCRVEwGAwTun3OJRgMcnTfKyzVJigpLeSZ3x9Fo5EwG6Z3Eo7VZMCs19Md7MfszKFi8VIQ\njBFFV1Ych92O0+mktbmZck8OLqcTIQva+4IYdXr89hLc+eMX0UiyhNdsoLezDadz6rcrk9VGMLeE\nU3X1XL1m2C1isVioWF75oVkqf/rEcWIdh9m2wjsu/l0IgUYjU5TrwJOV4vixl0mldrC0fNk8WXvl\noAr4LPD7Q+h0czsJJUsSilCQZQ3hcIJTtafQaGXczlwCg93k5xouyuhNKAra9/z4ZT43e9+qIR5f\nhdE4uZsmFArR0tZMU/dZ0CoggZIU5LuKKS0uIzt7/ArIWCzG0X2vsMKYJi87h1giSTQOsiwha6Zf\nL1kjke+00T3UT68k48kbO+Gr1Qz/sCiKINDeSqVjOLTSYjTTPeAnqZHxrHAgBf0T5p9ltdDa20Mi\nsXRabyLZBYuoPrKX1cuTH7qJyZbmJsLth7lmeT4azXAfCkfjtLf3MtDlJzw4hCGTQfvexyunFfYc\nqqJh/S6WrFlDYXHxefuZyuSoAn6BZDIZMhkx52Jq0RsYiEcRsoa+aCfF2VZ0FgO1Z2vQDPVTXjy7\nUMXJiEdj5JmHIye0Wg357gztba2TjkDPNp6lurWKrBIry673YTAOi1wmk6Gv089bda/hNRWzdtVV\nY/b6OHn4EIukGHnZw66hUDSGJJmQpTSKMhx1Mm0k8DqstA70ELLaxxyekFGGR+SpVBJNJoVeNyzg\nBp2B9r4Y/QYjvklWucLwKNysgXgiPi0B1+p0pB0euru7KS6e+UKghYoQgubaI2xY5EKjkRkMhjlT\n3US4rZtCrUyF2YA9y4pWM3aSf63FQHXNMVKxMG+8JeMqL2fJipWX5ZYOlzOzDp148MEH8Xg8rFy5\nci7sWTBcLB+m02QhFQ0Rigxi9ZpxupzY7FYMdj063dAFlSuEIJ1WSKcVxCSHR8bCEfKd748ci/Kd\ndHfWTnhvQ+NZanuqWL6lFN/SolHxhuE9RrxFHlZuKSeg6+bI8XdHy2xrbUXqOEtZ3vv+5HQmg4QG\no85MLJGecd2QwGMzMdDZSibz/vOxOBiNpuEfhXOaTJIk4skkisU+ZVtqkFCU6a+UNDiy6RkYf/zb\nlUxvby8WglhMRmrPtHLsd29T2NfPdk8W5W4nLotpnHgDZDusZOmTFNtsbPe4cTXU885zv6K5sXHS\nPqoynlmPwHfv3s3nPvc5PvnJT86FPQsGWZYxmXRkMhe2retkWM02RKAfyWRCyaRHjwWLR4Zwm6f/\nah4MRunrj9A/kCIYSiOE/N7qRAWbVUOWU4c7x0yW870RTziA0/v+iNRuM5GI9YwTsEgkwunWYfHW\narX09vQSCQ6gKGkkWYPRZCfH7UZv0LN0TSnVh87Q0dFBQUEBjcff5eo814TCaTZYCUd7sZhmfiK8\nQafDGgsTCATIzs4hlUqTTuswmYykUilSH9DgeDKJwTT1JmApIWa0U6DJaqO35cN1mHFn61m8dpm3\nXj+GtW+A63Ic6KeIgR8h16ZlwN9LyaIyFuXm4kkkOLFvL/7OCtZec426S+M0mLWAb9myhebm5jkw\nZeHh9WaRTs/+ENxzsdmy0LWdRcktIT2QZLB3EI1OS39zF6vWTe0+6esP0tAYJBjSodE4MRpNOOyG\nUdeEEIJkMklHZ5zmtgAWU4DifD3GcD/ZrsWj+UiShM0yHMt7ruC2trVgzTPQ091JoKcFhymNy6xH\nq5dRFIVQoIO6jlosrgLyC314y3JpqDmDTqfDHA/gyP+gr1qDIEO23UlrfzeeCzzNzGk20ebvxZWd\nTZ8/jNM1vLhJp9OhczgJRqLYLWaEEKQUBa3u/G6RRDJFTKPHapn+K71GqyOZntsf9MudUKAf/9l6\nlqZTLPbObHLdqNcyeM4JSGaDgY1FBZw8W8cRJcO6a69TRXwK1ONAZkF+fjbJZHxO89RotBQ7XAR7\nW1m1dAXWuB1dQI/HmU22a/KIiGQyzcnqLo4cT5DOFJPtWoTTkYXRYBzjV5YkCYPBgN3uIDurBEkq\n4dDrXUQ6/cTiY091t5okUqn3I2yEENS2nCYc6UIbbmBliYWyfBfZTisOm5ksh5Vir4vVi5w4lC7q\nT7+LwaQnmB7kbPVpiqzjRdNmNiERx2oyIil2+ocurD11Wg36TJJQMExvv8Dt9o6muYt89EaHf2jj\nyThZFi2SfP7X9L5QGFfRxLtJToqY+zmRyxkhBPUnT1MYjrA4Z2b70g8jwQfcJZIksTI/H2PDWU4f\nOzY3hl7BSGIOHE7Nzc3cdtttnDx5cnwBksRXvvKV0b+3bt3K1q1bZ1vkZUE6nSYQiDI4KM/pFzed\nTlLf1cCitaswmkwIRaG3u5m83Iln6lPpDJ1dETKKBaNhZrP5QijEe9pwG3RotSGWlNkxm4aFtqcv\nRFbuqtFRUCqV4nDVGywqs2A1Tz2xF0+mGIwCGTOKP8FipxH9BCGGJxu70GmyUYRgIOzH7dKimUFE\nygjRRJJAyoDZUojtnIMyhBD0dXbglBQUkcagDxO1uChdvJi+gcC4fFLpDP2JNNkFRdPaVXK0vtEw\ntniAkoLLY38TrVZLOn0B8wrTJDA4SNexwyx2aDBOMwT0XGLxBFGsZLlyxqUJIWgNhsheWo7FMvGG\nXxe7fpeaAwcOcODAgdG/v/71r085H3BJolAefvjhMX/H43M7ap1PYrEw+/Y1kps7d5EHQ0N++gYO\n0yZpyF+2CkVROFFTyzrN+MU7sXiSd472gCjAapm5O6e/uY7FySFKi3yEwyHeefM1brupCFeWlbbG\nLvSWstGwuJrq0xx6/ed4i9YRS54/39H8+4c4fDKJs0umbN1SkhP80A2cauRMmx63M4fugUEGok2U\nl1rRaWf2gljb1E9booit229FlmNj0qLRFA3HDmMIt3LrxlwOBRRsrhxO17eMuS8cjdMQjFO4eh3O\noAJMs6JAV2MTm+0ZPNlzu8jqQjEajRftuxaJRHjnV8+yJJWgub+G0oKZr01oaB0gy7eOhGviZw3h\nMAeqT7PljjsnXFtwMes3H2zYsIENG95fe/H1r399ymdUF8os8XrdyHIP8XhkTvJLp1NEIs3c/dFb\ncEX6GPL3IcsysqwjnR47GyeE4FRNL0LJO6+vNpVKE4uniMYSxOIp0u/5aaPBQWwDnZS8twWu1WrD\noKtg7/624WcS0ujoWwhBT2sNOVYzyeT0Rz05ThsDba3o5ckjd5YU5ZBM9QPgdWWRZfZRczbKUHh6\nP0iplEJ9S4hIKAtPdt6EoYhms5niFSvp16fpSWUQwX6SiWFxFopgKBzlTE8/9XFB0dr101rA80HE\nQBee3PnfU/1S0NLQQLFQyM/zMpTQjvap6RJPpIgqJrKyJm/nLKuV7HCIzs7O2Zp7xTJrAf/4xz/O\n5s2bOXPmDEVFRTz11FNzYdeCQafTsWXLCvr6zpBOz25FphCCrq461q8vITc3l+uvWkm8/jjR4BAm\ns5NobKygtXUMMDhoxWYde45jJqMwGIjQ3tJDQ3UL7TVt9Ne3M3C2k/76dlqqWzlzvJa211+jwDZ2\nt0K73cFQyEPVqQ6GwmJ0gUVfXx8WhliWX0hX53i3w2SEw3FcSOcdKeU47HhdGoKRIAB5LhfFOUtp\nadVS3xwmEEqgKONfJWPxFG3dYU7VxzFrSlicX4QsTd6lo9EAd917F2U3fAS7z0ebv58jXYMc7Rui\nXWvBUXkVKzZuxmGfuT832N9HnlG6IOFfaKTTabpPnaTIlYVWoyXL46O9dwbhkwLae4O48nxI5/m8\nAIptNlpPnpilxVcus3ah/PSnP50LOxY0JSUlbNoU4dCh03i9y9FqZ74ST1EydHXVsXy5jRUrhpcY\nZ2VlcdPaZbx07B2Ew0skmsBuG95dL5VKc6YhitPxfuRIJqPQ7x8i1BfEoig49cO+SY1p7Ig0HgsT\nrjvBUllPvL6XE62DuBd5yfMOh/h53EW8c+QdCkrcaDQaUqkU4XAYl0UmL8fDvjOnKCjMmnLLVICO\npn5WFhVQXXv+L/imyiKee70Jq8mKLMvoZZl8u5vuPj9VzX3E0xGMJjCZ9Gh0BtIZHSa9DZe1kGWF\nTvRaLUORCBr9xL7YaDSEyRSmomITBoOBWz/yUdr7Biiz5WNzXmDoy3somQzBxtNsXf3h2N+jt7cX\nVyqJ8T3XWkFRCWfCQ7T39FPomeIHTEBz1wApUz6+aWyY5rLZoKNzdLMwlbGoKzHniJUrl2Mw6Hjz\nzRMYDMVkZeVO/dB7hMMBAoEG1q7NZ+3alWNGxB6Ph1vXyTx/8BBnkwG8uQ4kSaLPH0IozlEXRzgc\np6+tF2s6Q4nZgGYCN4IQgiF/B9qOBjY5snCYh1cuxpJpOmvaqO4ewFdehMVsJBRxEE+975ZJp1Lo\nJXDYzCyy5XL6aBsur5VEOE4qkULWyOgtBnI9TizW4VF709kejEEdZUX5nK4PE0++/6X/IO4sB6sX\n23njWB2GtIZ0JIpBApdGi8fhApFNLJUiEUmRUhTQyJgcGqx6/WjccTSRxJg9LCCRSJRIJMJQNEoo\nFsPfV8eGa0o5XlOLx+nA4XBQ7Mlh755DmNZcO+HB0dOlu6GWlW4LXq936puvAAJ+P1nn9FFZlllc\nvoLG+mrqWnvwOA04bRY4pwsKRRAIRukeSiBbC1i8pGLK0fcIWZLE0NCQKuAToAr4HLJ06RJyc928\n/vpROju7MRo9OJ3uCUPRhBCEQoNEIt1YrQluu+0qPB7PhPm63W7uu2UXT//XDznz+pt4ly+nuTWC\nxTx88ktvb4BY1wAeow6TdeIolEg4QKyzkcJEhCVuL/pz3hJMei1l2VYGwnHq36mjYIWPZNrFYEAz\nOguu0+tJKYJgOIqUytBzoAl/fIgSrxW3c3gBUCyjcFoRJJ1WhMFAnjaLa1dW4B8IYsn2MBSOYnRN\nLODRaBRtyI82cIZ4Jo+CrPFtoddp4ZwDnOOJJH2NjQw5nXgL8gklMyjxGO+cqmFIABYbGqOVSLQf\n3451aFeu4Gw0SnUwiGirY8eSRRQQpeX4WxSuueaCRLyn6Qx58T6uWje9jb/mg6GhIVqbztLf2Ugq\nOTy5q9MbcHp8FC9agmuSScTJCPZ0k28Zuw2BVqtlScUKBgYK6Oxuo9Xfh80oI0sKGUUilAC9PRd3\naRFOp3NGUVt2rZahvj6Kii7ONhILmTkJIzxvAZLEwMDAxSxiXploJlwIQW9vLzU1jTQ3+wEjYEQI\nGRBAHIiRl+dgxYpS8vLyprVgobW1ldqq/yat1fLcGwFcS7YSjAsIJCmwm8dM3ilKhmQiRjwSROlr\nx5WKs8hiwzXF3uXxVIaq7kFEwUqKSvQ8+OA2hBAEAgF+99//gifcT4lGotBuIRZL0Dk4SDAZRWfW\nggSpWJpIRCGpN2FfvoiNm1ZysqGXiGUZ1o4arvKNf232+/00VVXh0moxGo28VtfNQMSB25o9rS96\nKBajKxanSjHjufpabB4vRquNTDpFoLueksoclm5YPy6vcq1gX9VJBquOgCmLonVbsE8Q0jYRqUSC\n3vqTFMtRrt+w7rLcwEpRFA4d/D3poQ6Ks7UUuJ3odVokCZKpND39QZr9SYQpl9Ll68ib5vFue3/x\nc7ZYzRjO84MXjUaJxWIoioJGo8FsNmE0Xthxff3BIGccLjbuGnta1JUWhfJBXC7X5RFG+GFDkiQ8\nHg8ej4dMJkMoFCIcDqMoCrIsYzabsdvtU267+kEKCwtpb6nEoW/mKreL/pYzBM+2YzXrGDJZQX7v\nR0DJIMUjOGQN+VotuRY7FuP0oiO0koQjpSc4ECKcnU0ikUCv19Pd2UnybA+VRQY8WcOuF4NOi9Nu\nIZFME0+mQAh0Lg3m9/ZGqe8d4MCed0jklLH1urW82dZAIpnCcI6f2u/303TsGAU22+j17RVeDjf3\n0dAbxWXxYpxkx0cBxJIpWoNRqmIQynNTmJ2L0WojEvCTiLWxdMMSSiqXT/hDoDMYyK9chaOwmNY3\nD9C87zmyl67Bll+CPXvi9opHIwx2tiL3t3NdWQFLFq8872Kf4TetEMFgkP6BIOFYAgEYdJrhBVCO\nYXfOTPvCVLS2tGAgSrltkFxf3rj6Gw16SvJzKMkH/2CQk+/+lnD5FpaUl0+Zt5JKI0/xw2o2mzGb\nJ98sbCZoZBmRuXLivecSVcAvMhqNBqfTOSfRCbIss2L1Zl76zWkyaSeGQIpbfKVoNRKJVBJFURAM\nd3iD03XeiIzJ6O2PkJ1djMdk5nhDJ4lEgu7ubnrffIOdlWsIdFSRmzXGvYlBr8WgH9+VluQ46ahu\nZpBC9Ho9ectXU1f3LqtKhkfh0WiUphNVY8QbwKDVcu3iPIpdQd5ubCEQs2M3OjDrjQggGEvQGUnQ\nl4KeeIp+h5uY24PJYuPNt9/m/7P3Hk1y5Gl658+1h/LQMrVAQiREoQpVKNFVXS2mu7lNGrnGNZqN\n7R721qeZ+QjzBbhmPNGMh73sHlZwyaFqkq2nUFVdAgUtE6llZESGVu4R4WIPgUogKzORCaBmyO7G\ncwIsPMI93DOe//t/xfNEQi4joyHe+ckHpIeO3nYHwhFO/vgfsnnnJqHtVfxek625LkIgDHqAwdai\nC506AcHh8miW8bNvPZOger0eGxub3Jpbp2pKCHoUSQujqDqCIOCYfcytCp3KdfqtAsmQj0Q8RigU\nJBTSSSSiGIbxQnnfzc1NVm/9mh/84Id4wtF/d4mowXtBP5/fv4IkS0xOTT/zeFGS+PuUm/IA4dVI\n/c80YToAACAASURBVIF4ReB/YDAMg6HRN/nlf/oVH2ZzuwU8n/ryeso7pRa2FyUVG6QuQsUO5VKZ\npS8+581kkqCmsdgYYWlzg4lc9MgobGunTjw6huTB9vY2J06d5vcri+zUGsTDQRYfPiAmyXvI+2mM\nxAzSRoDNaoN7WxsslzyWmwIdJYYWTmGKPRpBDS8QQtMdfEqVwISf0KkZjIkJbhfLpBtzzEyOox8h\nCSuKIiMXXmdTkhj2unzvzYssLi7S7bZIJBL4fBFCoelDpwKfxsbGBp9cW6CjpAgn3iCharQaVZrN\nGoX6Ns1WjXKxQKVQQfZCaF6EB8ioNBhNeaRTMrCO5zXIZHTOnZskl8sdK83WbreZv/5b3pmJo8jS\nsceQVEXmrVNpPr33MbF44pkBhxoIYPZ6B07V/l3A7PXQjnHf/xTxisD/AOEPBAl6fsyWSy/goCov\nF5243oC8u3aYbG5kd7udCgWp5bfwN+oEHw9cTEydZHkRHq2vk436CIf2R6Fts8t2uYUpxZk+eY5K\np8PKvXvkcjlm33mfW7/+j0w3G9ilMpHEs1v4VFliIhml58G25jJ+eghBkClXaxRbHQKj02hGiNzY\nJHoohKz7KTabyIEQ4VSWcrnAZ3fnOTuWJXnEuQBys+e5+/nHzP+7X2JrUwiCTrK8wY+/f/nIPLdt\n23z+1S0ebPWJjbyFv2uxsvGInV4NMRaBeIBWR6RoikgjZ9Cnw7j9LlariVOtY1UdHm03KTcs3jh3\nknD4JM1mlV/+cplkcp73379INPrsKc/1tRVGwjZB//Mv6LqmMpWUWV16ROT1t3Ach1qtRqPRoNlp\n4LgOsiTTEaBQLmH4Rv5etF/qloWR/tPo8HlevCLwP0BU8nnGYzrh0CQb+TViYYiEX6xAZFl9CmUL\nWUuRHcruyeeKgoVsmgS6TwaIRFFkavoU5XKS9e01VktlIj6QRAHXg6bl0ReDJLLnGU4O+shTisKD\njXUajQbxeJyp937If/6X/xsfRo7X9XFvu8w1N8rwhVPIsozjOBTtPsmLb9LxJ0in0siShNPvY9Uq\neNUyq7US6WwOUdMQ/TGuzq/xhuseOSkpCAJCdoTPP1vkH3w4i6rqbCzfJJ/PMzY2duj7+v0+f/vp\nV6ybMWLDw8wt3aLuE9CnRkgkz9G3e6zMzdFpKYTT5xHFp356sQxmskYlv0F9fY2HS5tcv3GDC6em\nOXNmilTqBKbZ4m/+5nPee2+KkydnDrwGx3HYXrrDe9Mvbrk3lIpy5/otPElhs7KKHAR/REGPDUTR\nOrZDzV/i+uodWvUC2cQQyWQK+Tk0Y54XdQQmX7UQHohXBP4Hhm63i53PY/hdjHAYn/8kxcIWjVaN\nqCETCOocx9TGsvrUGl06XZV4cppgMLTvmL5TJsAwzUp57wuCQDyRIJ5I0Gm3abVbOM6gQJvx+TBC\nIZ52JxYEgZwgkM/nMQyDQCCAPznK3VoB06kzFjvcXGGtUucrJ0xm6vRuCmF7p8iqP4IeSpGKxrEq\nO7RX5nF38uiegOF5dPo9tGwOTxSxBAHT7vPr65/zzve/y9iJGaRnbP+1QJB+bpzt/AqjY6cQBOmZ\n3QCe5/HJ59dZN+O4gsLVpS/RT8+QSg+6Ono9i8X7D7D7UYLhvbsAu29R3Fqha+pI8iTRyYt4Yz2a\ni3e48WAJ02wSCl1jdnaUVOp1Pv74Dv2+szvs9TQKhQJhuY3f92L1Fg+PSrVMo3ybZlXm9fcvoPv2\np57iqRh3tvLEDR+l0ib5+xtMjc4QDn/7U6idbpe27jty5/GnilcE/geGer1OXJbph2VaZpOgL8TQ\n0BjtTnIgglWr4dc8dE1E0xQkURx4Vbou/Z6N1XMwLXDxETLGGEkbiAfkVq2eiSpbBFWFeruNbdsH\ndkr4AwH8x8hP+hWFWqsFQLVaZTQcZmhqikcLc2xubDMWlMmGg4PrfYxOr89nVYfEyZNIkkS3b1Nq\nW3xWqBJ4988IKAqlT36Fr90krfvwR5+4vTcsC38khs/3ZGdSKxV5+G/+P6onphh//0M4MXHgtUYj\nEVJDIW5c/QLB6RLXd8hkLh/63RYXl5kvSViCxaZaI/bu28jqgPhcx2Flbg7bjuEL7I2MHbtLfn0J\nzx3Z85oga4RPXqIZjrF4/zYXjbe4dWuZc+dcMpnzfPbZLUIh/74dQavZJOZ/MXUM13VZWJ6nSZlT\nFzKUQoEDyRvA59fxT4/QWM+Tm0jTaXZ4tHyPbGuU4WMUjZ8H69UK2dffeqULfgheEfgfGOr1OoYA\nyfEov7m1TdA3iHYDgQCBQIB+P4dlmnS7Jo1qE9d1AA9BkFDUEJoeJG5o6L5np1xqrQKnR4OIgI9B\nx8jLTMKJoojzWFu8ur1NUNfRVZXzZ85RaYyxub3Jw80tDMkjKoMui9wo1CknTtLu9Gm3bHqCjKqH\n8Y9MINZLdL66z1AwhC+xf+hHEgT63e4eAo8kUsiiQKjZZvO//pyK7x9jB2P7BngUReGdty/wwNrh\nfKLJhQuXDzXdbbVafHprlaYTpBixSZ59HeGpRWhne4NOSyUY3p/WKOXXcJ0hNP3glEcoM0lTEHi4\nfJPT4de5f/8h77wTI5k8zccf3yGZTO7phLH7FoFjuuE8DQ+P+aVHdNU6YxND7JSaOL1n6/rkTk2w\nPLdKxnXxh/yMnVZZn19H2BQYGhp+7ms4CFavxwYilycOXmhf4RWB/8GhtbNDSlVJGga68girN4yu\nPiEpRVFQFIUQBnDwZOdR6Nt9BGmbicwQDgI+PCzLfCkCtx0H5TGZtmo10k91hcQMg5hh0J88QbPT\nodXpUG7Uuaf4iI6eRfb5SWsauqJSKmzS2CiQLuZJxlOH9mDLorjHjOJr+I0ozWKTU+PDUC4x9+U1\nTn7vh8jfKFAqikJ6eoaQaz7TMf3h/DKFtkQp7pE6e34PeVudFvm1Hfyh/RopvW6bTtvDF3j24FAg\nMYLpWmxsPyQtDbG1tc709BmazRzXrt3l/fefTIBKsorjHN/D82vkt/O0hQqjE0ODFkfHQ1SeTQ2x\nZJTts9Mszi1zIhtHUmRGTmRYvb9KMBgiHH4Rg4e9uFcsMvzu+99aP/kfI17Jyf6BwbFtZFFCkWXe\nPZ2g3Fz81k1gi/UlLs+EiQYC2IKA43q4L0AMT6PW7xN83JrmOs6BLYiKLBMzDEYzGTR/AGP8DKHA\nIK3iuR6u5zF/7zqRRo10Iv3MARpB2O/2AiDKMn1Fp2N2MIIh/MUCjz7+3YHmxb5QmK1649Bz9Ho9\nbtxfpSR2iZ89u4e8Aco7BUQpvrdg+RjNeglBPFovR5RkxGAaazhGy66zvl7BtnvE48PMz5doPU5L\nAeg+P+3e8z0n0zTZKK2Qm0jvpp/aVh9Z1ajXamxtbLB4/z7zd+6w9OAB+a08jUYDPI8Tr59iQ9eo\nNAZSypIik5qIsbj+6KW9YtdKJTrZYaZOnHipz/ljx6sI/CXheR5bW1uUNjfodwb+foo/QGpkhHQ6\n/a23WQmCgPd4jGI8nWIqO89qYYN09NvJPZYbRXKxBjO5E4iiSMAwWG21GX+J79GzbXZkhdOPR7VF\nWcbp7tf69jyPUq3G/FaVK482aY6+id5nMDXktmmX79Gbn2fs4ptHntPzvD2F1Kchan461uD82XSG\nlfU1tuYeMHx6ds9xeiBAzTQP+ghgUDR8VGoQ+O4HyN9wQrLtPqVCBZ//4KEYs91BUY73zGQtgCtn\nqEcWkHZsOp0WhhFDFFMsL69x7twZYCB89vubImds51hKkQBbhU3CWT/K4158x3G4u1TBb63gbK8S\nFAQisoIoCjiui7W5yabnsRoIkByfYOYHb3Hr55/wuigQDvoJGgHqoQblcolU6sV2gFvVKvOKxlvv\nv/98lnZ/gnhF4C+IXq/HytIShqqw/elH5HQVXVHwgG6xz+aD2zwMGAydPc/E1NS3MirtOA6VRoPO\no7tUQxqe6xIXYMnaZLPoMJQaf6nPrzR30NQlPjg7ufvDCYeCrDgu0y+QW/0am5UKqTOzu33URjxO\np1IhHHyidtixLK7Pb7BeC+ILnMIL+EmmLyA9Ft3qdzt0ircJ6GlKLegKLSJBP/IhP3DbdVAOGd5R\nVI1m60lkPZzK8OjLz4nmhgg81UkhShK27VIul6lUyjQaBbrdOp7nIcs+7j/cpKSqpFP7e5StdgvP\n9R0YfQO4jodyzP59WVboWg7hyWkqW795XNcAw0ixuLiwS+C6rhMbPsVmcYGx3NGaLn3bptQoMP5Y\nn8Y0TR7ceohdE7lwOnSo1kkWMLtd8nfvUInHGfn+Ja7/7TVOd/tk4mGiqTBbyxvPTeCe57Fc3GHZ\n5+PSj35yrKGpP3W8IvAXQKfT4frvfkuiWmTkw+8zMrJfoGmEgcjS4hcf8+XKEhc/+HBPQe15YJom\ny8vzFPJ3cdlEDVeYGE4giiK24xAN9/j5F7/kxr1pJoZeIxJ5vj5g13Uo1taJhAr88LVJAk/lfHVV\npRONULO6HE/maS+6/T6rtsPr008i0Wgqxfq9e7v/rzQaXLlbwFFnyGazuK6LXVrdJW+ARmGRBNDX\nQthaGNMR6FZbJMO+3WnUp+F4EDiEgCRZod9/ssWXZZm0orJ19zYn3hv4tXpAoVhga/4Go8FlkkmR\nkTEdXVcRBOj3TT668SXB0UtsLV1BC44TTQ7vemhaZhtBOPx5i5KA6zpIhxD80xBEERcJ2R/BDNpY\n1mCn5/MFKRTM3Q6hTqdDKJLkztUviQRUYslnp1Ma9Tq+sIwsS7TbbQrz89TzHc6dfuOZQlUAPk1j\nUtOotFpsteYZ/8GbPLr+iOJ6gZOZOH2vjGWZxxawalkWt4slxOlp3n7r8gv/Vv7U8IrAnxOWZfHV\nr3/JVLfF+HAOVZYPHVcO+Xy8NjrM4naRa7/9DW/92Y+eW7WuVqtx4/ovGBsyef/dGB1zgvvFAv5d\nU2GFYEDnZ7koXzzY4nc3NtDLFzkxfvpIQ17Xc6m3q3S6K1yYULgwcQLlGzsFz/NITE+z6vMTaTRI\nPEch03Ycrm9vM/T+B3uKWrFYjLueNxB66nT43Z0CeugiEf/Bn+04fbpbjxgKRKjbJj27h6ZH6Nsy\nO/Ua6agPWXxC4h7gCKCqRxsvf41oLEZhYYHuxUu4osja6hxWe4HZGY/3vrN/gbasHi3Vx9m3Z/AQ\nKZcW2F5ZJ5I6RyAUod1sIyuH29wFggHq1RqSfMwoVZTp97soo1GaVpMMPFaJ7PKLX3xEs+lgWQKg\nkd8MsTx3nX/yz8ZZvXmTZCJENpvcV4Rum220gEq326W4uEg1b6HExkg9h8N8LBhE7nRYW3zE2R9c\nYmslz6dX7+F1miR2ykyMHN6R4nkepUaDtVabqu5n+od/xugzhqVeYT9eEfhz4vaXnzPaaTCeOb5h\nw1QmRX8rz92vrvL6u+8d+331ep2b13/OxXMKicRgm64oMqamYPb6+J7SEJFEkXdnhzg12uFXX3zO\n/YUlEomzqIqBTwugSINjbbeP2e3Q67fwKDKRlpkdS5E8pGugbXXJTJ9g5uJFbvziF8yUKwzFj47w\nO90uN4pFYm9dZuYbCneGYRAeGaFYKnFneQfZf47AU+QtiiKSJ+A6NqIk06nvEHJsJElGkzRaVgeC\nERRZoYdBpdEgGQnuCmxZvR56MIgoHZxecRxnX1+xKIqEBY/1hUd0hAbZnIvn15kOH7yo1OsdiIaR\nZAVBEMhko4TDFmurX9LrnsW2HQTh8BRJMBynVt7geTqFLLPC0OQItbUqhUKB+fktCoUKfv8I2ewk\nkchgwUqnL7K69BUNywfCKPntDmvrK4RCcHJmZHcopmM10SIKWyur5Fcb2IERZk9NPnfdxvD7Sdbr\nrC8vc+LMGUamRrj+yU0+v2+xsLmFIQgYeCiPn1APjzoCTQQC2Swjb7/H+WNKKr/CXrwi8OdAo9HA\nWllieuR4uslP40Q6zW8X5+m8dvFYbVHdbpcb137JhbMyicQTEpEkkaFz46xfX2DmAPuqWMjP//jd\nca7d3KDcuYOrGJQbNpbtoSoKRtDPRMZPOqKTiowTfEaLHEDd7jN6+jTRaJQ3f/pTbv/+9yxtbjKq\nKuSi0X0R+yCialHTdCa//wMmJicP/NzJM2f4xf/xf1LtjJHN7NcoMVQN02qjB8L0miUi8uPFSpQw\nywUsQcB53GVi99uIjknYCCMrKpbjEA8dvlOwe13C+v4UgSJK3L/5Ee/+0zcwQkHytzeIZw9+VtV6\nGykSwvPcXaL2+XWmTsgsLdzFbAcRpcMXOkUN4A9KWJ0dNN/RUr+u0wWKROOjzH16g0rfj2GME4n0\niUTSKMqT3YYgCIxNXsLRenyx9BlDhksuPoxtO1y9usr4RIWJiTFaHZNHDyusLhSZmpzh1PToCxcN\n0+EwDzc2aQwPYxgGuYkhjESO6akT1Ot1Wq0Wtj2QhNUVhZRhEAqFUF7CCekVXhH4c2FjeZkRRXqh\nzhJJEhkWPdZWVjh15syRx6+vrZJNN0km92/fR8fTfH51nknHRX4cZfZ6NsVine21HfpmF9Hx8PLb\nDGenGVNkHMnFFgT6nSqqGEALjaIeMXPf6HToqdquU1AoFOLdH/2IWq3G2sICCw8f4HNdFG+QsrBc\nDzWTYeydd3ntiIgql8tR8AykQ0gurPqpd2rogTDdap5uz2S+tEpHkqnLOoRTSNogT+p0O9TaBQxz\nB9m2SKXSyM/oY3a6JoHw3oXL8zxarSoBvYYR8mP3+iiVAunXDva5LDa6GHFjYDWnPfmesiwzMhpg\n4f59bKuPTw8hiBJyIIg/FEWUnxBWIjtKfm2BniWg6odXGBy7S8+aJzeTZm2jQluIMhFMo6o67XYP\n5QC9dEEQCBlJJs79U0qlDTbX7qELbVQxzJ2PdtC/2sTWZEiGuPz2JMnIy2uNpFSFnc1NDMPAdRwk\nSUZVVZLJJMnk8fToX+H58IrAjwnP89h+cJfvxl9ck2EsEePje3eOJHDP89hYv8XlSwefKxjUSV+c\n5OHNJWbiIVaWtilvlvEBiYCOHh3kXnV3kHIJf0MatNvtUXrwkPWHcySGhxmbmED5Rm7e8zzuViq8\nOTzMzs4OD1bX2Ko16T4W1vfJCrmZUwylU4RCoYERsaoeu3OgVqsRHTpLKS/Ttqw9hVOAuJFgubxO\nW/WxXpinnZlEiw8T9BtI7RptTUSJPCG9XjeB7BcxOy0K/RaN+XnGs1kC33CY91wXodsiENjbwler\nVfD7TTqCgOs4VDYLnMv68Twolxt43uC+6/rgPlm2Szjmp93voj5uIXRdj+LGNp31ImNelfXKGqn0\nSdx+D6vdoFbcQgzHMZJZRElGklSyI9MUt5Yx22UkKYmiRRAEEc+DXrdOv1dCoEw0JlKruiDE8Bkx\n3I6N69rIch9dP/yeK4pGNjtFJjOJabZwHBu/51GrbdEzb2KIm98KeQNEAgE28nm8kyexmn2C0cNr\nAK/w7eAVgR8TvV4Psd8/1JT3OPBrGq5ZOTAH+zQKhQLBQJNQ6HDX7tNnx/ibr+bZ/O0tcprCaMSP\n9A0DB8PQKBSL+whc01TSmorrelQ2N7hRKDB15gzxxBNCXCgUKIYMNitVfru4hm94DGM2iawoeJ6H\n3euxViwwv7pCEpfXp8afS3Co0Wig+dPMXBxl7upVMrC3+0XzY+2ssiyKCNNvEIxmEB7nUDVfiE5j\nGzdgID6OPh3EQepkZAxZkum26jxYvkeuUSebG94dsjGbdRJB3562Ts/zqNcL5IZ8lCs9rI5Fd+Eh\n3ajLJ7+cx/C5IAg0TIikckyfHMP1PPw+nYbZAcK4rsfG3Ar+Uo1T4QCmmqa400DwPDRVQ1M1DM+j\n0ShT7XaIDk8NSFxWyY7M0LUaNKo7NOuL9CybttlGlCX8RhgEH8VSDewosdhgB+h5HpbVIBw+XAjs\naQiCgN//RLDMMGJ8+eUqvfZNmP12hmVEUUR1XUzLwqz3MMZeKQj+XeMVgR8TjuMgfQszObIgYNv2\nMwm8tLNJLnt4btB1XW5cW6TbtmgjMKmr+8gbwKer4LXod3so2v6FRxQFEpEIVrfL4rVr1KcmmZya\nZr1S4VeVKuIbpyGdYyg2tOd9giCgaBqJkVEYGaVVrfBf5u7xVr3B+TOnj0Uo9UYbSQpjhAxOvvkm\nj27eJFSvkwiH8VyHua05hNGTqEYcr9McTFU+/lxRlAjpYWrVHZTkELZj4yDhDwV2ZU21YBh19jJb\nyw+w11YYGR3Hcx1oVUmO7V0YW+02qtZHVYN4wNbN+yTKy2TSOmOvh1DVwbNyHJeN7W2ufVLAUuP4\ndR9yp0a/12NjYQNpNY9f1ynvNPE8UKQGtUqeaDyHKMkIgkDYF0Q029Tzq0SHp76+oWi+MCFPpN0D\nNRggGIggK4MFrVJYRzFOYMoamzs7qI0KgjSEZeU5dWrvs3keZLPTzH3676nV60S+hdF3AF0QKO9U\nUBwfweCrCPzvGq/GnI4JWZaxv4WR9b7nHVm46fU6h7rUuK7Ll5/NsXN3lcsnhjh9+STXO11q5sHN\njLIs4B5x3bqmMRyPU11a5sqXX/DvN/MIlz9g7K13UI7RiheMxshdeoerdZPb9x8ceTyA43i7UbER\nMjh3+TJkMiyXy9xcvE0xHCczdYm04qPXNbGdvbomih5A6dq0y9uImob/gK4TQZQwJmcpahG2NlZp\nlwuMJML7Wjkts0UgINDr9em0Owhz13lvViWT0LC6Pdpt67E5r8jYkMHFaYnq8hKFrTL1SpdPP19g\n5XYe3CjVfoSGG6XpRQlF4pRaFUrVOjs7RVqNGo7dJ+QLILUa9Kz2k2voNNneKaOER/BHMrvk3e91\nsdodDCOJ7o+ihUcoF2uUqwUUpUks9vwF9a+hqhoxsty+vXKg7MBBMLtdSo0Gm+UKG5UKhVqNhmni\nPCVFsL26w9Twyb8Xs4c/dbyKwI8JVVURAyGapknoBYcMqq0WejR2ZKXf87xD//hv31ym/GCdk0Mx\nBEEgEQkgXjrBzdsrDFdbTEYC+3RGjqOVYrsOFTx+t7KO/Gc/5d033nquH6Aky2Rfe4Mvr31ObH2D\nkWf0/wL4fQqO/cRRXFM1Tp4+w4Li8kBoI0dGKLVaKLIfn+tSL+cJx4dwPA8XcAFfPIdk1XCsFvgD\niAcUZQVBwBg7ycrV33A5phKJ7k9LdbstQobC+qMVOqVN9JEOraaPfl9AFMGxPUwLNNVHLBpHVRWs\napHPfrfC6Pe+j6QVSBoC/vDeFFJW19nc2QItiCxpdHomrUoNXREJqCrNWgU1E8B1bAo7JRRjeM/w\nEkCzWiTgCyM+7nP3HBufkmC1uMDpkzNH9vo/C5KkkAwNs/HgIbWzdSLRg/W8HdelWK+zZraxVBkx\n4EMIPf4N2A5uu4VQ3SGn6JQaHZATjLzx7crKvsLBeEXgz4Ghs+dZvfoJZ4dejMBXaw1G3vvekccp\nik6/v9+Fu1iss3xjidlcdA+5xgw/Fy/PsLC0zedrJcZViXTQN3DJcb1nLhg92ybfbLPqucRmThFv\ntKnpAZrN5nOrD0qyTPTkLNfv3zySwMNhA9zC3mvpWWw2ikx/5yeIikazUaPdamI44zTmr9FqFgkk\nR9D1QQ5bFEQ8w6BRzdNsVxAC+89p2316zRqp6TNUio8GYmDfaH1stxrUNxbp5Oc5/0GCD8/5mJne\n+909PNqtHo/m5ni05OGPjeCrWkTicapLK+h4j913n7xHFEWGEwE2a3nk4DiKHgA9QK/bwW3VaXUt\nIulh2q0GnhLaR96W2cLrWwTDT2oTttlA7LqEM1EcXq5v2u8P0dR8ZDvjXP9qke//2Rv7jql3Ojys\nlenGDELDo4T0g3dktu2wVa5y5aN7/PkPPvhWpCNe4Wi8SqE8B4ZHR9l0B+Prz4te36YgKgwNH62V\nbBhJSuW9Yk/9vs3VK3cZNXx7TA++hqrInDk5zNjlGbZSET6ptbmzU2ez0cd0HHq2Td9x6No2NdNk\nrVrjTrnC79sd6uPjnH7nXfx+P24qSyYcZuH+/T3b4uMiGIlSlhRKpdIzj4tGowhOBcd5slBtbS1S\nUXW2Ntd5ePcWa0vrlHdMXDeCrcVRLZvayn3KW8u0GhVsp48giIQiWQxBxN3ZwqpVcB0b2+5jNmt4\nzQq5sJ/s0BBWJEvlKXchz3XIryyx/tVHpL1lcid8BGSobDdYXSxTLLRoNrs4jovjeBRLLQQjxvn3\nJohFGnQ2lmhVKiiSSNAn0uu2+aZdu9/nIxFW6Jj5XREyRfOjBJO0O11KxS3qtTqKb28OutfrIvQa\n6Fpgz7h9e/0RYm+beDTE3P3PmL/9a9YWrlOv7zy3KqXPF8JUdUbiIzQfdllYyO95vVCrcbNVQ54c\nITGUQTuEvGGwbuWXa6Rmv8N6WOfTr66+tCLhKxyNV8vkMdHr9TBNE21kjKsLD3h7auLYKQbP87i5\ntU329cvHGlwYGh7m448Uej0bVR08osXFbZRmh0j22VOQMcNPzPBjTWV4MLdNIxjnnqbTN008z0UU\nJbSAH39umFAoxHg4vBstfbWxhf/keYJ+P81ymWJhG0Ljx/qOT0MbGmNudY1E4vDeZk3TmJmMsJjf\nJBLNsrJ0n99+/luEmR+ge1E0PYcoPrlXbkZAqqyQVYO0O2VqSyuURRtRUxEkmYDaQ+pLdPNb1Bwb\nxQgRTcSJJZJoqorruujxDAsPv0ATBLr1GjsBhe0rf8Npf4NEWyAWDSI2LfR+m5DQx7JdCi60gJYo\noiSyGPEotu0QiuqMZLqsXv2MUCJH0O/HNC1Mq42q+3cLrq4HqVgKQSpRqm0R0NOIoowoysj+CDUT\nrGadeOzJwFPPMhH6DWKRIKXSoLbhuQ715S+Qb/1b3pp+jVFlh17IZby/jmyV2Hp4j6IcJpQ7Szpz\nvL9NQRAwxmcpz19nKjSGu+LyoLvB1IkMza7Jg75JdHoM5Qht8E7LZP1ugW4rxIV/9EOSqRRrc4XC\nwQAAIABJREFUt+8h3rjOe5eOVo58hRfHSxP4lStX+NnPfoZt2/zlX/4lf/EXf/FtXNd/N2g2mzxc\nWuZhoYTtD+HJQTabNqsf/54fnjnJ4Y1+AziOy83NLZypU5w6e/ZY51QUhVR6lvWNu0xNpnBdl/nb\ny4w/R1+tpsiIBLj0+qUj3XcAev0+ZReSj9X4osEgW8srMD1+7HN+jXA6w/KjexwlGjB7eoovr/2a\nu7cCNBs6Quw84cSpA48NGDnK5VXotHEskTBxsG16ZpNeb4WhnJ+U30CJBcFz6XS7NPPr1LY3UAIh\nNP8g7dJptLG7c4iVArFTOf6X81HcvkzFa/DG61n6wM1HbRJhddfc4OajCmsrDoVWg76oEE2E2Nzu\nEoin6V35Neu5GXzZIYZHR5Ekh5ZZR1aDiJKMYwtIskImnkFTKuTLq0hiCknQQA+gG0mq9Qadegl/\nKIbVruOTbRLpGKZpgiBj9zp07v+ck407nD8zSzY3aPtr2U1CPhUjHCcdhZbZYWX9Y5YbBcZPvHXg\nffwmUpkJlhZvMdGTeCOVo2J1ufHpMvmIxfA7555J3l2zx85mhfqaRSI2ijQcJ55IIAgCw+dnWfzs\nKsNrq4yNvtI3+bvCSxP4X/3VX/Gv/tW/YmxsjB//+Mf8+Z//+TMjrz8kFItFfnHrPt7IJLG3z+26\ntqRfe4v7v/mv/O9fXuF/PXGahDPoUHgajuOyVamy1LEInDnP629ceq6i4OjYNDe+ukM206VWayO0\nLPy546sM5vN1dF/uWOQNA+Ep4amJPl3TcMtlLMvieTNtsqLQ9zxc1z00/+55HgsLK7SqXZq1FFog\nghQ8/Dym2cV0wji1eTL+2GNTYhWRPkPRSTy3R6PVYTQdQFFkIqHQ7vdqmiamZRJMJihiE6nlmdQ9\nhmMqViTAw7UGsRkDf2AQ8etqkIfrbTzX5f69GlbVIWuEmA4J2I7DylaZuJLg9IkMk6E6v59bo1ms\ns7aygTqUJjqUo2e36HTAdf2DtLggEAvHCfgC5Es75GstnOQ5XM9F8sWoVEpgd0glIoSCYfCgZ7Ww\nmiXkrWtc0uoMR4dIJ5840gt4e0wkgj4/szkf89sLrM6LnD//Z0c+K1XViZ15h4WP/2/edF1OZIfY\nqNdZNV0WP8/jjyv4wxp6QEUQBVzHxWz16FQtenWPRCTH6ZMZVtptRs+e3W2PFQSB9PlZPv/9NXLZ\n3KuR+b8jvBSB1+t1AD74YCDB+aMf/YgvvviCn/70py9/Zf+N0Ww2+cWt+/jPv7lHIxoGxbpzP/6H\nVC68wXyryK9u3eN8KoH2mJ8tDwqeQGR6hpkTMy+0oBmGwcTUh1y99ktUoUlEPf6j2ik1KFWCzJya\nOfrgxxjkT/cuMAFZHkSB6gvoMj8eNjnsXF98cZ27d01ee+0nBBZW+fL+Q8TE2/uOte0+1VIJOh0y\noRRNTBrtAmElSLfXIuyzCfkCgB+rp7KcrzKRje5GjrIkEQ0G0TptVn73cyYEi1xIQBLr6LrCcqVJ\neCyDz9/a7f4ZToX41/9lm2i/w1gQ4tkogijR6zvUmh52S8GvOZQLdTKZMKerJg+qfYb9OnaxxPbm\nNqGT08g+A58kYja2EUQVRAUEkXgwQFkGybCw6tdxWi00fwLPKiG4Dq1mEUHooag2fqHKhYhIsquR\n8I/s6ot7eLi9Bpq2d1EXBIETmTTW5kM6ncONmJ9GKj3G+vA093Z28BsGeQleu/wWruvSajRpV9s0\nt9t4uEiCjM8XIR4JEBwN4QkCi9UqkVOniEQiuK5Lu1an02jSrLfYqtb41e/+ltmTM4TDYcLh8Kv2\nwm8RL0XgV69e5dSpJ1veM2fO8Pnnn/9REPjDpWW8kcl95P00YpksaS3L3Mo68slJqo0Gtm2jaRqn\nM5kXcuSp1WrU63Xq1SJWp06pqHD148+4kDMQBIiEfOiH9Ig7jsv2dp1KLcT0iQvPFfXIkoRn7+0l\n92kavRcgcNdxkDzv0GGl27fvc/euSS53DlEUOTkzyUpxgRVzB1E30H2DVFG/36e8ncfnuvh8A1Gp\nkDFKuWfRba0wagSJBgN8vfDoqp9uH1a2q0zmYrvn7/W6VBbv8J6hQh+Wl+/z5oUoTbOHmAxz8twY\nhcI6rUaL7brN/dtFPsiGqZZkVss2200bQbBxPJFQIMz0SABBHNQlKqLI1FSSjU9W2aiHGItGmA74\n2bz/iKIS5uz7P0JSFPr9Pv1+n7bVpmR3GD//GtF4Ek3T2CmV2Ko6uGaZTNpPJJ5G0/zU63Xmbv0/\nROgQcQ30pwqdVqdORFdQ1f1iZIIgMBoNYTV3gONpkGRHx/GNj/Bfr17FGk0iSRKSJBGNx4geoj5Z\na7fZ7HZJnDlDMplk9eE8y4t5uqIfzx9B9MXppf18tLHN9qoJnTwhweLC5DDjY6PPLa38Cvvx91LE\n/Of//J/v/vuDDz7Yjdj/e4XjOIQTST4cnkA8QuIyLrrMTE/T6bgEAkMMyMSjWnWwrDzpdBTDMJ45\neel5Ho1Gg0a1AG6bRBCGYmEUJQ4XJ7h4MovQ79Lr29iegOALYgQC+B4r6vX7Nu1OH9MUmBgzuBCO\nvpCq3D8YHYN0btel3QOSRpBUQMXp9+hbXexed6DAJ0oomoai6Y/TGU9gtdu89ubrB5oBdzodVDXC\nj388i/DU9Ggi9x3MQBSr59Htd3E9ha7ZR51NDhYXz8V1HTyvhyZfQBLO4HTb+EVpd/rya/TtLrpq\nE/L7AI9GpUjibJagptHv97FKq/gNiejsG6QmB4vsyLTDxvYWcqDLD6cVJAFqzR7nVT/u442EKAh7\nXNomXY+yZePPRJg61ydf8hD8fnyyxCXbo++I9P0BwtkhPDxMu48liOjJzB7idVJBdqotBHkMxW4Q\nSwxIt610+eA7pxn2x9F9kV0pAQ+PXrtELPjG4HO8gWa6bfdxHBsPSAkCvpEIPkPE5zu6djI+Psn5\n81Msnj5NwTHxyzI+SUKV5T1dT7br0OvbdFyXpK5zKZnAtroU81UmjXFOfXAB6Sli9lwPcyzLWDqL\nIAjYvS5ms8ZGscJoJvFS05qyLD/TcPoPDVeuXOHKlSvP9R7BewlH3Hq9zocffsiNGzcA+Iu/+At+\n8pOf7InABUGgUqm86Cn+m6BarfLv7i2QvfTuocfYvR73P7vK28PD/F//+RFnQyGmxsf3HNNuN6jX\nt1CUOu+9d5rJyYkDz3X3xseE1R0mhsPEInv/oM2OyZ3f/57RaASzY1Kp7bC5vc3qjk3fjpGJJdDU\nEInkOPFE8qVyjSv5PNc0g+TkE22MyViIayv38TkloiEI+QVEScS2XRptKDcElPg08YkzhGIDWdit\na1/yk7EMudzeEm+/3+c//IePcN0ZQqG9Qy93Fm9SzUwRiKSwLJOFh3N4jQ7yYx1zVRHxqyKSICJ4\nHt2ejdnr0GhsoTldIoqO4Q8iiQOyb1k7TGZ9WO06gbX7zCaimH2bnXoVirf48Ds5Rv7Rz9BK1xAE\n2Co1ufLrG5wIdkglA3Q6XQo1CV8wxLNQb3VZdEWC2QibaxKOL8qOIODix9A0qvU65XiS2BtvExye\nIBRLIsv7n1G5UmW12AGrwpmZCVyrx/q//3+ZWFtkZvpDxMeLned5NMvLpHSbXGaUWrVEsVjCsiQE\nIQBogw4Yz2H2fzjPv/zXtzk9e5aRkbF99/xrdDoNRHGOf/JPvsfPP72CdPEUXcemsr1Nu1LBMU1E\nQcAFFL8ffzxOIpPBCIdZuHWfufUWoRMX0EMGnuvSbTXpNhvYvS54HrWlVd4+cZZ4MrNbR2rVq9QW\nb/HOZJzZ0wcXro+CruuPazR/nIjFYke2hr5UBP61y8qVK1cYHR3lV7/6FX/913/9Mh/53wVc193n\nMP40epbFjd98Qqtq4Ds1hBFvI9rtfccFAgaBgEGvZ/Gb39yj07E4e/b07uuLC4/YWPiEc1N+0smD\nNS08vN3MtM/vY8g/Si47wkXbZWmzylpJZ2Ty/B5/yRdFLpHg+vwKztgETt+muHSH02+e5NxwnVT2\n4H4bx3EpF1ZYuDFHLfMGseFJAu06mcxr+45dWlqmXjfI5fYTSUTzUzSbEEnRaXcw8EgNDWRsXdel\n1WpRb5rYngySiij5EJQAwVgc02qw1izgFgqEVAlD0xAEmbur24Rri4wYOgWri8/vxxfwMT4VZyQV\nxet2qVYqBAyD67dWOZ9JYpt1qtUGjusiKUcXgDVZoH27xnohTqPWYeb1EcwdByIBtESWsYkziMVt\n9HiWaOrwnqV4LIrnedy/W2X+42VGxTAz4SGGJ8Cy2vh8QaxOnX4zTzooETUSzM/P0W778ekTBIP7\ndcs1NUrQd5pCIcXm5j2mpuKMj8/sTnV+jVpti+98ZzCf0HccVEUmGjaIxgapE8e2cb3BQNjTO8nF\nOw94tNUjfv4dep02O/eu4W7fJ6TaJIPgUwe70ZpdpLu4wvIjHckYJToySziRRj/3Hr+/9yWCMMeZ\nU3tNP14ErusiCMKfVI79pVMo/+Jf/At+9rOf0e/3+cu//Ms/ig4UXdfxOq0DR9od2+bOlc9p12NE\nUqMA2JaJ7js8n6eqOtnseT777DZ+v87k5ASP5h5SXvuY9y9m0LRnR83fXIMFQUBRJE6OJ0jGOtxc\n+IrpiUsvTeKqojDt17jz6CGetc3MkEUyeRFZPLwOIEkiqVyCWMph8dFX3P6Pn/HP3t7vJu66Lrdv\nrxGLHdxKGQyE8RoVer0u1Y0NMo9NLyzLZKfSwMaHqifQH6drPNej1zXpt2uITo+gFMQNBLEcG8ux\niUUCNGttzhk+RsdGUBUFURDZWizj9w/ut09R2NzY4JEQJty1MeI6nhan3hAp7OTxJ46eRK1XesR9\nGdo9l24vzda6w2tvvUvfMikW8zTy24SNIJt/+ysC/9P/jBbY/4z6ZgezUcfb2mI4v02mWyQ3eprt\nVgnJbVArbeMoPiK6QuKx+cX8wiqSNIIRerYIlShKGMYQrptmYeEhjcZXnD37+u4uwHFsRLHE6Ojg\nuSiShOvsHeCSZHnfzGdlu8DcSoPw6UuUHlzDV7nPiZRM4vXoPi12Pw4zySyqqlIpF9hYXmZhMU3u\nzPtkz7zJZ3c+IZWIPzd39Pt95h7NUarlqTZLOK6N53n41AAxI0kmOUwul/ujdvp5aQL/7ne/y4MH\nxxMw+kNBIBBgJKBT2ikS+YazdnFthfKmQHxoQN6e5yLWK8SHn70NlGWFdHqWTz+9hSgK7Kx+zLuv\nZXcHdQ5/n4y7j8KfIGb4eW26w42FG5w9efml5G4BTmRS3Pzk50y9kSCXG/TvHjT5uf86JZIhh7fC\nm7Rq28DpPa8XCgWaTZVc7uCCaDAYQVh/RLW0QwCQJJlmq0WpZiL7Yuhftzh6YLXr9NtVdFzCioyi\nKo81tF36fYl2T6ReaiPubBMd9aE/FuSy7T5Kt40SHdxzURCha7O4ss53RgbPWRAFQqEIhXKHjinR\n6/XQdAnlAONkAFHy8GwbrDZ2L0g2O4wiKyhBhfGgQa9rUavu0N1eYf1f/xvCJ04gqMogzeG4uO0O\nuiAT8RmkYmP4vnMWr3CVn37vLX7/0W/JVNs0fV06pkE8nsOy2jx6tIKqTKEcsUNwPBfkwUIoijLx\n+FlKpTkePLjF2bNvIAgChcICr72W280lxwNB8s0mvtDhwYDd73Pn+iPExBSVL/8Tk3GTodfSB1rY\nea4HfQdVHfTVxxNR4oko5VKVBzf/Lb6R9whNnOPKtVv84x9+51hk2+12uffgNslMjIo4R+JkmPHw\n+G7nkWV2adRbLG5e5c6Cx8mxC0xOTP1RRuavJjEPwez4KD+fmyMUi+8W6TzPY+XOMsHoE5cWq9Vk\n2AiiHtIZ8jRUVafT8fPZR/+Rf/y9oSPJe/AeFUnT6Nv2PvuyrxEz/Exm6yyuzTM7PXvMb3gwVvNr\n/OBsEMdtUN7aYGT07SMLuW6/T3VzjYzT5fT3LvHV7UVWVyYYe6omsLFRQFUP9xFVFI2hQJjPFu4x\nlRmn02mzUzPRgvEnW34P2o0SslUnoev7onxBGJhKqKqKz/KwWjWKOyIzwy6SKNKuVxk3/HtUAOtt\nB63RQHzKm9JzXVRNRzcSdLs9zE6HtttFlEAUB2Vq1wPHBlnx4Q92CVsWoZBGeniviJOq6aQyI4Rj\nKRa6JtMjr+F5Lp7nIQoimi+wR/HRdRzKZg9d15l97Q3WPs7zxqURPvvsAb1ejLW1NSRp5Ejy9jyP\nRt8jENyrVhiNniSf/4pkco1AwCAcrnHu3Hd3X0+HoyxXapA7XOWwuLZJuaviW/qY10/4CEUO9/Xs\nWRZ+RdlHnvFElMthmzv3P6LhvIOoRNna2mJk5NkiWDs7O1y79ynRMZnsxDSaPbrvGN2nofs0Upk4\nZsdi4c5Ntj5f582L7/xRFT3hlRbKochms7yZDJO/8SXdTgeARrlEq+qh+QeWUdWtdfSexdTY8ZXX\n2k2bRrlI2DjaF/NrhKJRzG73mceMZwwEd5OdavXYn/tNNFotut1VTo7GOJPNEKvu4DXrVDfW6Jmd\nfcdbrRaV1WVaD+9yQhU5e+IEiqJw7lSCpbnP9mhhbG/X9xgKHISAGkLKL+H0+xQrLbRAfE++ttOs\nolh1wj7fkV02rt1lJOTHNm22tvMDOdr6DsPxOI496OkG2Cq2yagi1lP313tqx6NpKoYRIRJJ4/fF\nUZUoihJF12IY4RTRWJKJE1nGJ8JkU+kD7c1goLaoWR2cfp9QOI4RSRAMx/aRt+PY9Ho9PM8jlUrR\n0SP0HY/ZM0Osr92i1fKha0drdzfMBn05hKbtTwMZxiy3bz+kXr/Dd7/72p7CdyaTwdnaeaaOycM7\nC4iVR1yY8ROKPPuZdhvNQ/1JFUXm/GwOsfgZliNwZ2H9mZ9VKBT48t7vmLoUZ2JmGOEIS0AY+JSe\nuzyNL2fy6dW//aMrer6KwJ+BC7Nn8C8uce3ap5SDYTbyJcyWSmVjFbFeYcQIkknEqRRrx/q8Xq+P\nbVXQwlHqjc6xSTwcj7Odz2M8w65MEASmczpzW6skn8MZ52nkS3nGM9LuVGk8FGQsnSSwscjK8iNq\niCDJA4Lr2wQlgXPJBPGxM3t2B8GATixY2Y2oHMehXG6TSj07R+/aMOEKLM/fRkqd3xP52/0eXruK\nEfDtRnOuY2N2qlidJma7hWV2HheyoN+pkBJKiEEfm6urqLbFbFBFVxXCWpxKbYeQ62GZPQxdot/r\n4vMNojOBg4nhWQp7Tk9GOUL7yy+ItJo1wvHU4+t3qJa32dnaprpTpd0y8Vxo5x+iO5BKhXHlILeW\n53lvdhKf7wGVCvT7PRy3T7/fxXbMXRFEWfKhKBqyrLHabDGtJ9lfQQHXhUajy+zs0L68s8/n40Qk\nztryGunp/V1TnWaL7YU53rqUJhh+9vPsd3uIHQsjfniELssSsyeTfHn3NutKHMuyDoyS2+021x58\nyqm3coSOOO9BGJ3Oseptce3ml7x7+f0/mnTKKwI/AiemJpkcH2N7e5tfLSzgE+IkfDLx4VOoqvJc\n/dbl0g6xkIckafR6/aPf8BjxeJwVQRx0RjzjfImIn/ur/z97bxIk13mm6z1nyDPlPI81AVUFFCaC\nIEGKg0hREqXW1VXfK4d92xEOR3jjsMOL3njXq14pvOmN13bYO4fddsvRN7qle31bLZEU2eIAEiBm\noOYpq3KeT57Ri8TIqgIKBVASoXp2QGWdPCcr88v/fP/7vW+Vbr9PyNj/Cv8urc4GL0yPviQc12Mo\nSQRDIbRigWIhj2VZ91ZmkiyhPiLsoZTVWSovMjY2dmfV8/jXqldvUIwVmL99FSF+FPT712ANegTl\nkcLAtga0G5s0qxVcV0OUgkhyClXTEERpJL0yb+I7ffotga5VR6xscOa1F3A9j2Q4xlJli6zloAMB\nSWZomnBHVSVKEnj7d9Ib9E0gRECWRmqNPYqDoWi0qht449NsLN1m8foC5kAnoGRQ9RyxpIE9NAn7\nUaLRGRqNDv1+g49vX2Fp/p8J+0FiCZG1zc9Qg2GCkZHm/G7/37GbdPs2N1eqVI1XkWUdePjOqdXa\nQpYbvPrqedrt3R0jTx+bY+nj3zLIZdBDDy8a1m7cJKO3yBQeE8zt+/QrVcZjSVzPo98fMBwOsc3e\nKBmJUeCGogdRVY2prMcXNzdot9u7FvCLlz8jN20cqHjfZWKmwKXaLZZXlpmcmDzwcf6YOCzg+0CS\nJIrFIhOlMQw1QSSSPNBx2q1tSnGN3kB8bErOgyiKQqpUorW5QeIRHt2CIJBLQLPTeeICPjBNFNlG\nDYw+IM1Oh/T4GJIo4t45tqo+Pp3nLtFokPZiGRgpUPbTret32ogDi8noDGtLXzKYPI0eSeN7Pm6/\niaoHaNbXqWysgx9D1Y+iSjv3HgRBQJRkZHQE1yXiKCguXFvusbrd4th4jpCcodm1UBCQJYnu8P4U\nqigKKAER13F2DCl9Fc/zqVctQpEp6JoPRb99FVVRaW2t89n7v6FZDRCOvYARfriXPRz2yUcMZDlA\nJJIgEkmQSk3wy7//XxnMf8RrZ49y5pUjNFtdBn0HUQrcacP4DP0u694Qa+ZlEnqWTr9MqzUkHE7S\n7dZxnDrFosH09EkkSWR7e2lXpZVhGLwxPcevPrlI4bVzKA8U1OqNi4xNPEYt4vu0t6toA5u+26RR\nXkKXQQ2AEZAR5Tt3UJ7HsNug0wDH8mlubHLz5izpdPqhc6rVanS8MtNT+7eG2Iujp0pc//ALxsfG\nDzTs9sfGYQF/AlRVeci/+knwfTB7TYKFIP2+g7yHqmEviuNjXFpbJeJ6yLvs9t8lYkis1JvA3ret\nuzG0LAxt9KGxbYeu73OkcPC8RV1TcKzaA4ZWj/cWdx2HTt8iHCkx48VYWPqSTnYcLVpAcodsLN+k\n1/HQjSlE6dFqGw8Bs98kapoUoxr20EMPhHBduHBzk/FskOFAZDCwEKMa/ld6vpoaoOPajy3g9UoH\nKZAnoOn4XfOh6dKv0u+1uHV9kfypl0hkcrs+xjZ7xJL3v3w9z2dpeREpmcP0/4LfbFxhoXeNF6eK\nBAyPTmeL9fUGy/U2tiehBBOow2s48iJIaTbaHxOoxXnh9DEKhamHQjpcN8BgMMDY5cu+VCrxpmPz\n2w8/I/7CHJFkgk69geZUCUX39rT3HJf6+ibe1hbxiEJUDBDKBvf8Uru7vvc9n2pmyKX3/g7BanPq\npTfuzZksrtwmM/lsApKDIZ1A1KVcLu8YNPsmcljAn4BcLsb165vE409WHGHkxyFLLj4+otgnHHyy\nVB/DMCjNzrJ94waFxN6uhCFdxTRbT3x+D7LVajF28uSuH+wn4W56+mjlbj8yKg5GKzLb9gh4Fq1B\nGU0eMFj+LatImN0hEe0owfDuhe8uvudhDTuY9QrisEdMDaLKFp4tY1kW0UgUVVFZLlc55cnU69AO\nD3d8EgxNpdUcgLr732m08u5g2UmiySxDy0I2InvVKfrdNgtXFwjok4Sie1yD74NZJxK5r3JaXLrN\nQKqSH0vjCzGCR15ga+ML3m9WiEeDmIN5YkGF744fJR6J4rk+nu9jOTYlrcVcYom61UKQJndJWBLu\n3B3tzpHJKUJGkA8ufMlaNobluuSTEt4u7SXP9ei32rTW1gmZPabzEYJP8B4XRIFiNoQb8DgWbvH5\nP/8d+eOvMntsjnJ9lbNnn50lbbIQYruydVjA/9QolUrI8jUcx0KWn0xv7boekgD1RpVTx6P7khB+\nlUKpRG17m0anQzy8++6/JIl4/pMnoQQCAYaWT73dRkklyecPHpYLYFkOoqjc0/VGo9q9icK9cD2X\ncn+VQKJKdC5GLFwg52a5+NFH9FsmrY6AM3QIGBFkWR1Ny/rc6f+aeFYfOg1iLmSkGLZkIAo2AUmi\nh3BvQEUUROKhNENLxPF1mhUBU+2TKTn3hlA0TUP2O3ieu2Ny0RwMqVeGCHKeaDKLIAqY1hA5uvsd\ni+s6LN2axxdTaLG9X9dep0k2qqLfsQCuVKu07S0m5/JsrFbwXBdBEMgUzrK28M8kzet8/9gUoT0s\ng9OxKN+ZKbJRrfPba39PyAhRLN4vhL5vP9Z6IZPJ8JP4WywuL/GLD/4RI1yn17UR1NGq2ndc/KGF\nbw7xe13GAhalqfSumvDHYYgubd8ik4zydjzMF7c+5LdbGyC7+5Lp7pdwJMjKwvYzO94fksMC/gQo\nisLcXJFr18pkMjv1p49CEAR8wHG2mT4yeaDnF0WRY6dOcfnTTxG7PaKhnaqUx61y98LQNLbqJmOz\nMc6ePPXU/cFWp/+QPjifjzM/39mzgHueS8PeQJ72mDgxe+8a1hcXULQJZk8EwB5SmV8k2Ixhy+K9\nAScJkRAimiCjBaLIiozne7QHIrZnEpBCuPBQUREEgbAWptx1OB2LY4tRVleGGMaAUDiAqsrEwjrV\nXg89GMG2HIZDi27bxbZ1wrFjKHc2WX3Po95tMzAylNdu4LgmPi4CErKk0aq16LU0XEVCiex9BzFs\nb1GaGfWXLctmZfMWxWMpBEEkGNLw/QEA3VaZnFMh5/koj/kziaJIKZPi21R57+P/k/gP/wcMI4Rl\nDQiFxH3tawQCAWanZ9henWQmFeXT6wvo9khuGZACBCJBGvY2WtAn84i7w0fhex6iOyAZ1hgMLUKG\nxvm5Ir/+9CrbmPjezCPtLZ4EzdDom1uPf+A3gG9+F//3zLFjR/D9MoNB94l+LxAIsFXZ5OhUgFjk\nAP7ad9A0jZPnXqIbkKm2WjtEYqbl3FEf7B/f91mvVPAiBVLFqSfarNyLcqVLMn1/tVcqpbGsyp6P\nr1TWCM6oRDPJe8W7226ytd4hEi3iiQEM3SA7nUMMOIxrKSa1NJNamjEtSUqLE1LDyOL9KcuemGAo\nDEcB0QFjh2uhJIoYRoybmzVS2RwT4yfQlAnaTYO1FYdK2aO8VGPhVp2tTZ9OJ4EWnCU0AuPTAAAg\nAElEQVSZHxVvx7bpNLYpb1xjbbCFlmwRzPZJTkpkplSSkxJKrEGlvoInmqxWF+h3u9jWTi1yu1Eh\nHXSJ35GAVqrbGAkRTR/9LYygDnRwbAuv8hknc2kCUoZ6Ze/X9EEKmRQn4j2uX/lg9HztGsXi3hYJ\nu+G5Dol4nMl8Ej0gk06liMXj9Ps9FKdJJvFoTfij6Hba5MMSAVnEvXOnJAgCp45mkQZlNjbWD3zs\n55nDAv6ERCIR3n33BRqNq09UxOv1NRLJPi+cfPq+m27onHrpJcRUirVanaF9X5LY7VsE9f2vgvqm\nydX1dQKTk/z43/3XbNYe/zuPw7IcNqoSxQemEvP5PJrWxdqleAGU2/OUjh/F8d07trE+q/MraHoB\nQRSRtSBDx8UI6niGh+U+erAJQJAVWqJE13YIqOoOjw6AYjLHpgn9wRBRFInGouTzE0xOzjE1dYZT\nx15CV1PEM7NEk0UU3cD3PDqNCrXqTVCbiDGJ7NljZEpZwrEIuqGj6hq6oWNbLuFYiXAmhFKKEYi1\nWF/9mPrWCr4/KlSObeF31jl2dGJkJOjDVm2dROZ+gVVUhXQ2QLU8T1G1UQMKmhGlXuviOvuTpB4d\nz9FY+QTHsRgOV5idfbK7SEmScV2PsWwaszlawQ4GAwaNDTKxp/PhsVtVSskQruc/lG6lKgFy4RD1\ntRv0ezsN4w7C0LTQlCdb5PyxcljAD0ChUODP/uwF2u2r9HotnK8EITxIr9dmbe0KuVyPd777Jr3e\ns5kEU1WVE2fOMHH2BcqmyWajgTkcUu/6hHcxTPoq7W6X2xsbLPT7vPCDH/DaW29RKpXwlUmWVh+d\nKP84rtzcojD58kMreUmSOH16nFptZcfj+/0OnjokncuBpjIcmvS7bQZ9EUUd3a3IAQVLkHBdDz2l\nM3AGjzwHx7UJKjamGmPDdglI7NrvTRoh2ppBuzMY+XY8gCiKRKIRcjGVbmMLfLCHQ6rbC7hSlfR4\nDDWkU0Eimt09OKGy3kaSVZbXV+gqcfq2A0GTevcSqwufYfY7NMu3mJtK3xskGgwGINuo2sP7LKXJ\nBE79MzLGqPgIooTvhen12o98Le4SDBrkNJNrVz+iUOCJzaO0YJxe3ySRiJOSbdr1CpXNFbIR5UA9\n77u0G3WygSHhoMHAEtDV+9cdDup4lkAxKrE8f+2x9qr7odvuEQ/vL+jij53DHvgBKRQK/PSnIRzH\n5+OPP8e2o2haDFkO4HkelmXiOFUSCZHvfneSiYkJ6vU6C5duMnZwdd4OMpkM8XiCWq3Kwo1bfLnS\n4+SRHq7nEdL1e4M/rufR7ffpWxYDQE0mmXnnHYrF4r1kFEEQOPXCq3z62/+XWKRHLPrkrZ7V9RrN\nYZbXZneae83MHOHy5d/Q77cxjPuKCMexkdRRcEB2vEjl9hrd+gBZvj9RKggiaihGr1MfeZHw6I3a\nrlVhLAIDqcSiucVkwL/nqf0glmMzNjXLamODyV6HyC5j3/lcBme9zFZ5GZsekbSGHhytjtdqHYzp\naZRd2k62ZdPrDOjbHSqBOMnJ88gBFc+18aQ6zmCLW5eXOH/8BIl4nOFwiCCI9Pt91OBOmakcEBhP\nDMC9v2CQZIN+d0Dk8dP1AGQiKtc3fs0b//3/uL9feIBoPE+ruUAuI3D86AT/9PElCMjoyYM7kA4H\nA2hscGw2RXdgYRjhh1bggiCQCkbxHZCsBu1Wi2jsyVo/X6Wx1eVI4mAe5H9sHBbwpyASiaBpGn/x\nF99nbW2NcrlJv9+k3W4TDkvk8ynS6TSGYSBJEqlUimskaLS6xJ9iouyrBAIyuVyOZtfn9T+fJZsr\nUt/eplqpYFsWgiAgqyrxsTGKmQzRaJTYHh+CUCjEiRd/wCcX/pGzx12K+ywMAAsrFRY2g7z82ju7\nusqpqsq3v32Sf/zH62jay/c2SiVJwrVH+vp8ocDKrUXqW7UdcjtJCqCEEjS6XWTTwQ24SOLO52n3\nGyhSHVvJkMhNUauILHvr5FwH5YE+uOd79BE4NTPLx5c6rG83di3ggiCQTsbYql5Ci+koegTP91nZ\nqlFRQ0Qsl83VLUQBVFVG1XVUQ6Xf7dDpeLQUieDxUfEGEKUAkhKhXlkjFu3y+eULLC82UO4M5HS7\nDZRED0WXiaei90b4HcemkIsQtPv0uyJGKIYc0Oh19xeY4jgWrrvJeGliF0nh40kkk1xfdDkGGLpB\nXnMo1zaxkuFdv8Aex3AwYLC5yMsTETQ1wEq5SeIBo7i7HMnmubRyi9JMhMrW+lMV8KFp0at65Oee\nTmX1x8JhAX8GKIpCKpWi2esz32vgjOdB09gWRWh08JfXSLo2Z8bHmZg+x+Vb/x9vnDOe6SRYpztg\ntary6tvn0HWdya+kAz0JmUwG6fxPuPj5r5EjHXTXQtP2lk222n2uzdexpSnOv/7aI/XjxWKR06fL\nXLlyjWJx5Jyo62H8NRGz30czDIoTBeY/WyQS36mmkeQArqUiB9PUTAsVi4DIvd5xxzKxhArHpo4T\ni6fod5tMZVMEtBSfb17hbDSKeqcgDmybeKmEoescnznOlesfc2SieO/nd/E8j3JljcljWXqmyc2l\nJW63JHqxHJH0FANbH9kUeh7ewIKtNoI9wBvUqXYsvBOTJBOjvQ/XtmlUyliDASE1i4BKaTZJY9Ul\nE5tBEEQse4tet8y1SxaitMD4VJjiRAb8UVtnbDLG2nKdTstC06I4zuOHy/rdJra9wdFjKpvewQpg\nIpHAD2SoN7sYuoyGyZszcS6u3sKMF4jE97n34vu06jXEdpmXJyLEIkF832el4vHyuZ0zFtlUDHlV\nxR56DHplLGvmwHmaC1fXOFo8+Uhfm28Sz8dV/AHxPI8PPv2Mm90ecnGcxJtz92KjHqTbbPDPK8so\n1W2SVpLbSxVmjzz5QNBe53DxRo3pU392T0P8tCSTSV5/+88ZDge899vPiQeHJKIikZA2ilSzXVod\nk0rTZeDEmJz+PuMTE/uSMJ4/f5bB4GMWFq5SKMwhiiLZ8BFq6+sUZ6aIRWMEgjE63Sbh0MNFYWj2\nYRAgGs+DP2pVDWwbz3dxHAtB7fPC0bPomo7Z76J4bbLZErIoURUEPtm8zjFVRhMEcqpK4o7sLZdI\nU8vluVyrczIRR3ugX16tVfBVh9WGy0pXoq5OIsxEScTjiGqIgKojSTK+7+O6Lq7r4rkONz5vcl0w\nKCET6ncYDnp0m010NUIuPRrlNltdQuEwg1iFWn2dVHIUPuEIBrFkBNdNszxfY7u8yOTRKJ43umMZ\nn0rRrHfYWN1gaDYYmn0UVXtoEtTzXLrtJrZdJZawOXMiz+pKBdU+uApq7OgL3Lz9H5kZMwipkIyF\neV3XuLG6wdZyDTmaIhSO7GpB7Lku3XYLp1Uhr7scm03fm4dYKXcwwrldB9wEQeDczDTvX72IMW7c\nyVV98gJeXq/gtgymX5t5/IO/IRwW8KfAsizWKxVuqgb5s+cfWbxCsTihWByz12Ppdx/SvrqFrtYY\nKx7MV+Uunufx+dVN1PhpSqW9R5wPQiAQIBwO8+3v/Tu2t7dptepUKlVcx0FWVMKRDFPFBKlU6om0\n55Ik8dZbrxAIXOD69c9Jp+fIZiaoLa5SC23iui754jjNxoBut0EwGEUQRGx7SHO1juanafVamL6L\n6bq4IthWG0Goko2H2eg1kOtbRIQ+Z2ankO+0WVKxDH09xMcLlzDsNicMnQeNB4vxJPkjWa5ev82Y\nqpAOBRkOh6zX1tkUFNqBFE48TqqUIxIP4zgu3V6PWmOTTt/C8SV8ScX2BOrtBhupPH76BcrIbF74\nDXEjQWnsBPpdky7fQxB8ECCVT7J6Y53wMImiqLS6d0zDJJloIovZD3H14jrJwEg5ZGga8WQE3QjQ\naVVQ1BU6LQffDzDSJti4zlHSuSrZQpRIdDR4s1ruUTh/8P7v2NgY6ysT3Jq/wNHg6MXT1AAvTOdp\ndwesV8tsLq3iySoEdHzu2ChYfSTXohhTKEyGHirUfdPmxprPqy/vXVhj4SCnckf55yufo2Yae7YA\n92K7XGPjao83Xvrec5XQc1jAD4jneXxw4QKFk6cpnNg9Jmw3tGCQsTffZuU9jw8vL3HO2mZ6Mn2g\n4Zvh0Obi9S384EnOnj3/xL+/X2RZplAoPJPRY9d1+fjjL7h1q0wwqPLiiwmuXLmAKI4xU3qFWzc+\noe6uYw9Fxo8eZW1xkVajjGNDb2uAM4zSC4sIQQM5oCD6Lp61TSoZIlmcGQUZNCsEvAGioHGxWmHM\nCJKORpBFCdNyUSdOE58oUhEUPi5vUQhIBFUVx/WYymXJpVJ8cvEy6xtl6uVNbls+gfFJIsUcyUTk\nfvLL0KTVNRGVIPFgCs/3aTVq1AWP8GuvcDKS4MtPttFjx+mGcnQ2r7NZXicayxAJ6XjegJCujXIc\nJYloRqNd2yYeK2FXPbhnFAuaEUSSJ1laLbOglDk1VbrzetqMH0kzc6I4siIYjmLFJFkkORknIt7f\nMbcth6W6xztzc1/9s+yb0Ub3t/h//vffMPaVt30kpBMJ6Rz3YWAOGQ4dPBxERDQtiqYqO6wGHMfj\nws0WU5NnCBmPDluYKmap1o/y0T9dQ9dCJKcmH3u+ruuycG2Nflni9XPfJbzHBPM3lcMCfkAWF5dY\nkDVmU2noP16T/CCyolB47U3q79tsdhW2LyxwejZJJLx/75GNcoMri0MKR95kZvbYN8bf+PLlG1y5\nYlEovEGv1+b69Wv8+MfnuXZtkdu3L5IM5vCrEiub82y3NpAcidpmj8b2ECVZRM+PQhMcx8Sxyii6\nTbIQRQ0GscwOAWxK2TDhUB4EsIZDbtUaLKytEUEgPD7O3IkT6LpGIp8n+uK7lJtVzOZIEjdY2UJV\nVbzSJEuSwS/ny8yePMl4JoUR1JEkEcd1qdVbdC0BKRDFsW163Q5NQUSZOcHY0VnUUBgfuPnFGu1G\nFd3I40/F6Kx8imIOsGwbxd0iP3lfix2JRVjZ2CIpltBkg37XRDdUHNvBdmx830MPTfO769c5kk1i\nGDqObRKJjQqfKIqoj8hmvX5rncTk6QNtYD5IOBwmO36KC7c/JBQckIg83PYQBDB0FUN/9Mam7bh8\ncrVJODbDkfH9bSpOlbI0AxPUbwuUxToVZ4tEKnZv4AlGg2m9Tp/tzTq1lT6l5CyvvH7qsbYB30QO\nC/gB8H2fS6trJF44d+BjaMEgjE2QMlQ0ZYZ/ufovRNR1JgsGiVh4V6+UXt9kq9phuWwjGSVefP3V\ne45t3xS2thrEYuOIokQ4HKdcHkWjvfnmy5w712dpaYWPP14leNsiYiSpNboEYkUSOYVhr4U7vI1v\n2ygq6AkNTTfQAkOCsogRUtG0GA+qBUUpgBgJU1cCdG2PU7Eo6oM643CMcDiGV5wilDX40X/15yPP\ncdtm4W//gZf+u1dI58N0NsvUt7bpl7eo11v4chBJ0UBwCKQyqJks+WwB+StqjEhCpbfSxpEUkAyE\n7DEqCx+QTyRRjBj1Zo9saqSjFmUJPSbS73fQ1RBrK7eIJCVEeSQhlMRRxOWmNMk/fHSBt88cBbdO\ndBflxlepNrp8subw43/77jP5O8aiUYrJc3x26xYTqSbTY1HEfSTk3GW73ufLxSG5/HGOH32ygaJg\nMMj517+H53lsXqxw9domrjBEViXwwRq4BNUIueQRTp+fJPiIIJRvOocF/ABUKhXqAZXifsW3exAb\nn+DS55/yn33nLYqlEuVymYWVm1yc30AWhxjKyJva9aAz8JHVCPHUHKdemX7iHuAfC+l0hNXVTYLB\nKINBB1ke3Nt4NQyDEyeOMzU1gW3/A1t1l25C5lRpHNsy6TZdBv0+Vr9FUAM10EESRFxLwDYVulYE\ne5hG1sPYjsPQ97EliUgux3Q8jizLrK2sMLx1i5PTD/db+/0e6XTsXn/08y+vUg+kSORjxDJxYpkM\nlmVxc36NlJJA0QxEUUJ6xKrO7HfRQ1GCQR/VCGHbQ5Bl7NJx6G0SjuUYDrpsVetk00lEUSCgy2zM\nrxBQBQKii6rLhKMPr3BDp15gY6HHhdVFzoz1qTfCZOT8rpOmABtbLX671GH29HeZmtqZsnMQZFkh\nEjR445VvcfnGbd67uMZkVqKYCe0ZAO37PtuNPsvlIV07wulTZ0k+JpLtq7iuh3Qnts4wDF5+8VUA\nTNPEuiOZ1XX9uVGZPI4/jat8xtxcWUUbe7JVw24Y4Qjrqk6lUiGTyTzUZ+71epimOepnShLBYPDA\n0qk/Jk6dOk63+wW3b7+PYQR4990XdySwaJpGpV6mpk+SzZdoVW8gSTWmThmEYkUU/QiWZWFZQ+zB\nAGdoYZlDzF6H5vY2vbqKETtGanyGcDjy0MowOTlBdWWNq7dvc+bM/Z5+v99henq0odzpdLi60UaJ\nJ9DutiR8n5W1LTCyBIP7KzrtRhM9nCYYqzLo9FCN0WCSooZoL9aIDzqoehiz51FvNEnEovTMFhYD\nJsdP4DghVjc20PQAgQfuyARRxIjNUhG36OZVrm2ts1WtceLY3L3pV9txaXZMfnujQk8LE8qN88Zr\nbz+zVlswnqbTWCOdiPDS6TnqrTFW1ja4fmGNsOYRDcLdrobtQLsPzR5oRpLJsZPkUvGHBnb2S6tv\nEsrsDMfWNO25CyzeD4cF/ABUen2CsYPlTn4VMRajt4vHQzAYfC5v/QKBAN/+9nneeMPbUwe/sLSI\nXYzSXduA2m0yUxp6OD5yc/QdsAQ0beQ1wi53IpY5pLxQobE1QJVeQAs93PNNjJfYml+k3enc+z/H\naTA+fvLO868iJcex2nVUbTRwVa3V6boq4cj+irfne/S7AzQ9RbqUY+XaGp4TRJSVUWJQfIx2a5W0\nHkYLRmi3KpjmKsGwiB2SECURRRLJptNsrVdIFoIo6v3VvuO0KRxR+M5/c57tjSbzn9zm8/cvMpab\nQArIOILE65MxMq++yuatNi/PvU0o9OyGx6KxJI2N+17iiWiIRHQW152m1e3T7vYxzdHekGzIjGUM\nToZ0NPXpFiGtvk/uG9Y2/Do5LOAHYGjbhJ7VhoisYFl7e6k8r9wt3rVajfX1LcrlNq3WANMc8PnW\nAlbcQVBvEZo8hhsS6csOgijgez6eNcDrNAhrQYLBUfzYgyiayviJErFMk+WrHxCMnSOSeniqMz4x\nRt0c0Ov18DybTMYYDar4PleWysTn3malWUEURWzLZqPSJZjc/13XyHFQAUEgoKhkJxNs3F5DC44j\nSjJqNEtr6zrJO37jrqjQHfRJ5+I0ue/zEgoZQJrt9RpGwiYS0+m2KiRSbULRCL7vkx9LkB97hY31\nOp3tEMeOnUSSJQJ9ja3P+5w/8R0yu6xan4ZoNMr8YKd9sSSJd4r5s/uyuIvneTRNgWOHBfwehwX8\nAEiiiOc+eWjCbviegyT/6XmKVSoV/uVfrlOpiMhyAV3PoaoG11Y+ZM10SEV99FSGdqdNJhlGMx7u\nA3uuy2Bg0qlVSIRju05/RlIxZl/WmP/8U/BfRg/FRqHDokhAVZGiEa4tXyYfFXjttReAUetqKCgk\nVA1RGGWXNlstUCM7gh0ehWNbwP0vllA0Tm7SY3NpBU0vIgVUPDWMZXYJqCEcf0jACDHoD3lInM6o\niKuqwtZWjfn1mySyVc6emaPTWqTfGRKJj649X0jQrG1w/co8dkvklRPjfOfVHz2z4a6HzymEEi1R\nqdfJJH8/BbVcbRLMTH4t1/NN5bCAHwBdCTC0hijP4o00HKIYz5c29VH4vs/Fi1f57LMq4fBJCoX7\nRki9XovL678j950YE2dn8T2H9QtfsL3aJRIfEk1H7k0aipKEHgri6Rq1WhN8H+MrLSfXsrG6HWLh\nPjc/+j/QxWOoioaHjyvJvJp8h+urtzk+PnVvCKrVaiEYo7ZMQFaxhxbb9S567Mn2PHzP46uFOJJM\nIooia9cuItXqBBoLmNs2fSWOGyuiJFI0m01Ecefdne9Z6No2xYJMKHqMtetdOu0WVz81iSWDeK6P\n2XFo1QZ4nRb/5l/9l+RyOUzz2bhf7sbY9AmWLv+H31sBX66ajJ87uIb9eeSwgB+A6XSajzY3CEaf\nTgniuS5CZYvUzLNRBjzRc3se9h0fcVmWfy/Tab7v8/HHF/nyS4d8/g2krwQsfPrFPxGYGDJxdnZk\nTyoppGaOUL2xQq+j43otEtnYQ7fsoiQRSkaoVVtIsoyqqriOQ3uzjF2rYQgCWUUhdDbFyuUaxfgJ\nBEHE8zxUc0CgdpPlLxtcm5tm9vhxTNPEC4xWtEE9QrO+jYOCJj3ZR0VAAHxsq49rD/E9B8/zMJcv\n84K8RSTj4GgC4YGNF+hjujdZWl+mSYKsPgrCcF0Hc9BmONxC03ucebFI+oFWyOqyxUwhSiRq3Nno\n1tANlQ9/tfJ7UWHk83luX45RbbRJxZ9N6PBebNdaDOTUM28FfdM5LOAHYGJ8jH/57Ud4M8ee6jiN\n8iYzsehThwfvl1qtxubqMu3qBv12DVkYeSs7HmjhGJFUgUxhnGw2+7UMBs3PL/Lll0MKhfM7NjBN\ns8+N2m944T9/6yFvaSORIlLq0V5vMugF6dQ7RJIPFwtRklCjOp1uB9+yaS8vE3JdEsEg4p3rUJJR\nWoUtGtUKiVgW27Hw/R4/+dHrOIvLVD/8kM35eeJjYwiMNqjDwQgL1QUwniwmzPM9BoMeveoSqqAS\nEEASRDqLl5lxt8hkEkh6FDsUINBqYQ23CQoimgAf3LpMK3MeVdlGkm0SiSCFUppYfHrHaxZQPEpj\naYzgw+qLSFyi3W4/sd/3kyKKIifOfZtLH/09b4WDyHvIB58W23a4tNrjzFs/+MYMrP2+OHAB/9u/\n/Vv++q//muvXr/PJJ59w7tzBh1q+aei6zkw8xtLmOoQPbowzXFnm2LHHD2E8LRsbGyxc+RRpUGU8\nFmAqZRCZSN8rCL7v0+2bNDs3Wfv0MtfFMJNzLzEx+ezuDLrdLh9+uEQm89qu6pP5+S+IT6tEUjuL\nZXRsAvBprzZo1gJowSGK9vDAjKqqVNbXceod0sEgyi6Sslwpxo3NDZSejmVtUMi/ijNIUKvWGI9E\nMHs9PvrNb+jPfR8YTRxWL/eJzu6dY/lVHMemvrEInRYh38W4kwFqdttkrQZHxvKAj2226feahHWZ\n7FQaTZOwzCGdThUr6/LyG7No2t4tOsexUVVnR/EGCEYk2p39hTw8Lel0mq2Jc1xe+Iyzs8/Wiwfu\nDM0tlMnMvHovbu6Q+xx49+z06dP8/Oc/56233nqW5/ON4eTRI9i3b+IcUEFSWZhnTPS/1lXScDjk\nwscfsvzJP3ImMeStkwUmi2li4eBDRVQQBMJBnbFcitfmCnyrJFO7/Ct+9/6vnplC5vbtZXx/HGWX\nKCvf91nY+C2p47sXAAGIjU2SnC2A06G2Xt7xGHtgQmWbsCSi7DHQomgBfLWCZS3y2iuzGHf2MMTQ\nyOEuG49zTNdZ+vxjhtYQXdMRXQOz9+j0n7t4rkNtdR5tOCQeSaAoIp4/2uy2ahuUInd72wIBSUXz\nXehvY5tdREnCc13S0XECZotA4NFyu067RbG0u8xUlkU8d38xa8+CuVNn6GhTXF3YfKbH9X2fywub\nmKEZZo+deKbHfl44cAE/fvw4s7Ozz/JcvlHEYjG+NzvDYHMD8wmz+qorS4TXl/n2uRe/tlvCfr/P\n7379S2Ldm7x5ovBEE2/hoM63TpSYEDfZWLpJo9F4qnNxXZcrVzaJx3cv0L1eCztQJ1h4dMxVMJWl\n9NJZfGlAe3sRs9XE9zx816W3vEbS0PB8b8fvOY5Dp1un19tk7kyYo9NpIg/ouWVdpzXoAzCRzRLp\n1lm6dQuASDhJa3t/f99aeQXVGuI5UKs2aTZclue3WF1u0F5fR3hg3wFAtAbEjBBOcxPXHtKu9Aka\nGYKiizV8tL/OcLDNzPHdXy/X9RCfsGf/NEiSxEvfeouaPM4XN9dwnKdXaNm2w+c3N2hrRzn3yhvP\nlYPgs+SwB/4UjI2VsCyL373/WwKzc8Rz+UeGNFiDAZWF22SbNb77yvmvbXLMNE0+ff8/Mh3sMZHf\n/+3/VxnPp7BDAr/+4Bece/tfH9gEqdPpYFlBFGX36x0M2mhRdmxq7oas6sSnT5BOD7E7A5prK/Qr\nXaR6C88IMTBt1ICM67n4vgXYBGSfUjFKPJbGGrrc/uzhMGpRknDuJKEbmkYpGGBtcYF6oUAsFmVz\nzadZbRBL7X0LPxz0qS+vM2wFsK0QgpBCkvI4bg8I4ZgrtBom/Z6LEugQCokI9gBDj+L2+tTW13EH\nBQKqgWg9OmGn1+0QjvXJZHc/n27bpfg1byp+lUAgwPnXv8O1ywneu3KBM+PhA29sVuotLq30SB19\nmZfmTh0W70cg+I9ICX333Xcpl3ferv7sZz/jJz/5CQDvvPMOf/M3f7NnD1wQBP7qr/7q3r/feuut\n56rtIssynU6H7UaDxtCCcAQtHEGSZQRBGKk9TBOr3SJgDshEwiTj8a/1TbmxtoJhN0jGnn6SUwpn\naJZXqFoKY1MzOI5DpVKn2RwgSSLpdJh4PPbIO4l2u83CwpBQaPcVY6tdpuFcQ53MEtAfv6FrW0P0\nkI0RMvBcl87CCkFBwLFdHNPG0PWR1luWdihsfN9nY6lDLjlGJpujur2FPRyidPtk7oQ71NodFs0A\ncnp0PpUO2E6LcFJH2kXdYVs21Y0qTl9CVcMP6cVdx8a2PLx+nZzYRFd1PM/FGTYx/DrxZBjbMmm1\nTMLJGazhgI5nk5mc3XUx4Pse3c4208fChEK798hXFpqU8scxDGNfaT3Pmn6/T2VjGVUwiRkKhq7u\nsJH9Kr4PvYFJs2djCTqZwsRj9d6yLP9Bru/r4r333uO999679++f/exnjw1xfmQB3w/7KeD1+v4y\n+76JaJp2T2vb6/VYWlnlxtY2A8vCdl20QIBE0ODEWIl8Pv+1rybW1tZYv/BL3vOY/rgAACAASURB\nVDhRfCbtGaVwCmvjMhduruPmznLzVhvTPEIsVsRxLGq1m5w86fH663tvYi8sLPCb39jk87urduaX\nPqAivI9wfpJI9vF3DMNBl1C8S7aUoldt4H52iVwyPmo7dB3SiUfvK1x4f525sfOcefElrl/5km6j\nQaLaZO7oaEN5MBzyd1dWqGdOUDpzhivrFpIWodm+RmEmg/zAFG632eb2lzV6NZFkOP5QIg4Avk+3\n3cLsDshU3+dEPgP4WNs3iAkiolQGu4PbV4jMnadc3kQ5foojx0/ueu7ljQXmTlmc/9b0rj+vVpos\nX9N487V3H3pv/r5xXZdyuczq7atYrTUSOsQMkZChEwiMPgO27dLpmTQHLvU+6MlxSkfmyOVy+4ob\n/ENe3++Du5PBj+KZtFCe8jvguSEYDHJy7jgn5/4wide+7zP/5e84P5F45r31U1NZ/pdf/ieE0L+l\nVBoVD0XR0fWXuX7915w40dzTIXH0YdzZm37gzEmE45RbbdhHAfd97hlUWc024TurYqs/JK49vtcv\nCKOohLtYgwGRB1QtuqpyJqnxH7aXgTMIdodw7gieN8PGrVsUpjPISoB+u8v8lw0U7Siutr2zeN95\nsmBkFIJcbhRI1MskFY8gPpqeoFp2EYcCIc2lVquy1Id3Jo/set5bm4uUxju8+PLe76+l2y2mxl58\n7GvwdSNJEsVikWKxSLfbpdVq0WrW2GxURtF3AkiSQiiRJRGNcyQWey69f75uDlzAf/7zn/OXf/mX\nVKtVfvzjH/Piiy/yi1/84lme2yFPyPb2NobTJBoqPv7BT4gSkOnVOtQaFXrmDcLBMOlU+o5JfpZG\nY++Yq2AwiCBU9jy2IASIRuJs1JbxfA9xt0L4AJ43RNPvJLXXm6iqgut6MHTRIo+fjnVd/6EVnt8b\nEEw+3N6ZKxX4fPUC9a0NMrEo9XaDWDKPKEqs3bhJNKtQXmqj6EeR5FGa/N7XJxKORKBwnC8X2oy3\nP2M6lsFqdTGEAqYU5lb1c5Y6dV774fdQvyIfHA5NqpUFpmc8Xvv28T311iuL2wTcsWcerfe0hEIh\nQqEQxeKzf1/+qXPgAv7Tn/6Un/70p8/yXA55SjaWbzOR/Ho2RlfLVRpek4q7SipbYKu1xcb1DU7N\nnAIGBAJ7D7tEo1F8v4Xn7e5AqAXi4K2juwKDdo9g9NGraN83UdTR+LZrDpBVFbPXJ6gFHxsqYA1t\nBC9A4M6q3fd9/F4fo/Rw0ZQlidcn8/zi1scUv/VjyhtliCaIxDPoRoRrX7xPs6mQLkkICPg8+nkF\nUUIPavTxWDWPsHHTJa4IyHIfT4iy1T2HG7AIGvdNoIamSau5hShW+M73ckwe2XvAqrLdZOW2z+vn\nX37keRzyfHGoQnmOaFU2ODX57F3gHMfls9Vl3vk3s/zff7+OZqhEYhFqao1rNy9xdLJJLre3TldR\nFI4cibG2tkkyuXMVFgzGqbddSqkcS9s1ZFVB1XaP43JsC0VzUI07P/dhODARTJdw4vHtk17XxFDu\nqyN6rRYpVUNRdz5fNBTiW9kgG7UbGE6YdqNCJJ5GECXwM8Rik7S3m/hCE2toITs+qqo+NEnquR62\n7dBv1+je/Jy8kCZZeAkv7dJpdvA8GUFQcLtrxPQy60tdatVVMnmJYNDm5W8lmZiaQ98jnsz3fZYX\ntlmbF3jl3LuHbYg/MQ4L+HPCcDjEH3YxtP1lCz4JtWYHOa4weSTPmZdusr35KxSliOeZNHqXeffd\n//ax3hsnTkxw+/YNPG+n1DIYjLGy6DF7JEO9t4rZHOCFPfTgznbI0GyQnwjBHa8R03IY9ixK2fy+\nAgJaDZOwPnbv3+Z2lbn07uoYy3HI5HK8PD3NL9//hF9f+xXauX9Nt9PGJ0EoHCcYjmMNTRrbOrWN\nZZSAjY/H3TB2PB+ntYnW2uJ04jSxyP0efzyVxraGNBsVIoLA3Nxx3n4rjueHsfxNjp8pUCgld934\n9n2f7a0Gy7fbaMIEb7z68u/NkuGQPx4OC/hzwnA4RAt8PUNBgiBwd5/66NE0J988iogA6KxfOLKv\nEed0Os3Jk2tcu3ZrhxpFlhWCgSkG3QoRT0JVVfp9l3avQcBQUY1RbuZw0MUIDQlGonTqLaz2AFUJ\nEcPZl3mT67hUVy1OTo3aPY5to/VN4kd27913LYtcJkM8Hue/+FffJfKffs3f/eZ/o6tOICjn7z1O\nUTVShQm2+x0SmoEAuI6J2d6A5ippSSc99iqS9LDLoCiKSJLMcNjiu+++TSweoFDocurUHLVajcXl\nGyxeXyQUFQhGBOSAgOcK9NoenZZLxCgyO/4K+fyz/9I+5JvBYQF/jvi6bH6SsTDugkW3O0AQIKAG\nSCYTLN9cYSq3u2JiN86dO8nW1kdUqzqp1MP2rKnENJvLCxw5PcbtzSWSs8dxXZ9ev0d3u4XtmPhU\nyBXDNFeqxIMRitk0AyXC8NKX+3r+ylabsJpGURQ8z2PYbHKiVELYQ7LWAWbvDC/JssyP/+z7FPOX\n+J/+53+PFxHpbF1F0GP4ShBECUHoUl68RMS3kV2bvBojGpshENh9Y9W2htS25ilM5Tly9Aj9fovN\nzQ1OnYJkMkky+TqW9TLtdptOp4NjO0iSRLYQJDoX/ZOMEDvkYQ4L+HOCJEnY7tcj55QkkVcnj/DR\nJwvUVJ+cXqe+UkOoC5w4v39/ZkVRePfd8/zTP33KxkabbPb4venLSCTJdm2cVq1KVo+xtblGpDRJ\nLBBD7noIQp/JyeMEAgpW18SxXTqVNp7jUR1YJGz3nr54N4ZDm/VbA46Nj863ubHBmeIEUmL3zdd2\nr4eYSOy4uzh96iTnjl2j0i2CkUJWJGyrj+97CLE0jaGLX6uRz+SRHqFl7rXr9NubpMYynH/zTWQ5\ngKoatFoPj9ArikIqlfranQUP+WZyWMCfEwzDwELBdpx7CotnST4d5wfBk/xf710lkg9TyBQoHive\nkRE+2Xn+6Eevc/nyDT7//D1EcYxotICmBRkvnuPGwj9w7KUE7foCVe8mWlwjpHsItsjVL5bpDx3E\nSBDJ0PAFwPNpOjrLv7tJNhqiFDdIZ6MEHjC08n2fhWsVspEj6JpGu1IhWG8Tj0Zpr6/vep6rzSaT\n77yz4/993yedTjE9fZRrt5apdwJo0RxGKAIIxFNHqW6usLlyC8P3CWn3w6h9H/q9Fu3GJrLqM3Zy\nmtmTp+4de6QwOZypOGT/HBbw5wRBEAgnsjQ7ddJfkw+GLImUxo7w+vnXn+44sszZsyeZnp5gYWGF\nmzc/YWPDQRSDBFyNz95/j7mXE0idTbY6CvVglMBYhvD5caIhfYeULnlygurVawi2z62tJtcvrzMW\nUZkcTxEIyCzdrOB3E+SmsrS2tlC3qrwws/uoOkCl2WSYTjMxMbHjZ5IkIUk+mqby4ulj1Ot1VjbW\nqK24oEaR1SDhWIpgJE67XmFjfRG7VkZ0hviuSSikcOSFGY7OziLLMp9euc3QE5krJkgkgqjqM8pa\nPeRPgsMC/hyRKk6xOb/6tRXw9UqT1NjuI94HIRQKcebMCc6cOYFlWQwGI9vWre1ZPvrilwyDQeRc\nlMB4mlA+i7THal9SVUITEwwWl0gfH8ObLrK5XGbzyzXCtocyzDE1NkV1foHk0ObkzOyuskEYjdHP\nDwa8+sMf7qr+EASBdDpIr9cmFIrfa2/0+/3RxGGnRbNbxnE8EopAdjZPUC0RNDTC4TChUOjehuv2\n9jamEsOIJNmsr6BpLseOPXsZ6DeVfr+P4zgEg8FDQ6s9OCzgzxGlsTE+uCQx9zW0UXzfZ7nucObs\n7h4cT4uiKPc2F28sztNLHGGY8ClM6AR0gY3VNYjHMCIRhF0+zMFEHNscUN/cIhEJEcynWGn6rF2t\ncUp26V67yfFkkuLk0T03LfumyZfVKnPvvvtIZU2hEOXixRqh0P3HGIaBYRg8SeJXNBolsrZNb6vO\nsaMlLGudbPbpYvr2wvM8ut0u7Xb7nse7oiiEw2HC4fC+vEd+X/i+zyefXuLy9QaCqBCPOHzvOy8S\nDv/pZMful8MC/hyhKArZo2e4sXyBU0cLz/TYy5s1lPQU0ejXF2Dr+z6fXPyceXHI6R+8jeu6LK8s\nUK2WScRDuD2TZr2JHwqhhAwUTXuomMdyOcq9IZcuLyF2JZJ6msxshNrtNU6HUpSKe4+Yr9dqrLou\nJ3/4Q8bGxvZ8HMDERIHPPrsMjL7MPM+l0ShTX7+O02+BIKJG0qSKs0Qie3ucq6rKqy+exPd9PM+l\nXv+MXO7Nh14P0zSxbRtJGskrnzTrst1us7wyz/rWDRTdIxSVuOvqa7fh1qqL2RfIp2eYGDv6R5F6\ns7CwxKXrLoXx7yJKEvXqGu99cJEf/+jNx//ynxiHBfw5Y3buJB+uz5NrtknFnk0rpW8OuVnzOP/9\n849/8FNw/dZNbvl9Js6dRRRFRFFk+ugx+r0SW5UynfYmuqJjdzsMqdN0bFxRwPMEBgOPYdcFVyUg\nTyJLHXTbZSKTJTwxybULV0jX6+QeUJ34vs9mrcaGaaKOjfHGa6/ta5UXi8UolSRqtTKiKLJy6VeE\nh10KioEW0MB36ZbnKa9dZT2eZ+rUd9C03VsjgiAgCAKVym1OnEihKAqDwYCV1RUW1q/jyTaiLOK5\nPp4FpdQkk2OP195blkWjWePTL39Bflzn1ZM5FGX3FpRtO2yur/DZlevE9COcOnnuDypRLG83CUbG\nEe98OSdSJTaXLuM4+9P7/ylx+Go8ZwQCAU6ef5sv3v/3vKYqBPWn+yC6rsent7Y5cvb7hEJfX3+2\n1WpxYWOJ0ls7A4+NYJCp4FEmvCn6/T79fp+B2R15rf//7d1ZTFz3+fDx75l9X8wyYPYdzI6LwY7j\nOolN3PSN+ipR1EqvcpO2F5VayVLrVm2Vi0ZqbnqRN6qUG1dV2ov0olKlt9VfWfzPYux/QuIdmxgD\nDvvOwCzMwmznvbDj1DUwMMzC4N9HGsl4Duc8B5hnzvzO7/c84TCgQG83YLw/jKHV6ZBlmeXlZebH\nx5lbWUEuyuP/XRrg6P4ylCoVfqCmvBxvSQnN9fXk5eVtq4JjZ2c9f/3reULjK9QZbZjsD3/i0Wv0\n5AGLXicjV/6L6oP/C51u/WXugYAXtXqcAwc66R+4wdjCEPZiAzVHCjGYvlldGQ5HmJ9e4NMvRzEr\ncuhs6163Zvby8jJX+z/hW4da6fp2adzxY7VaRWm5g+LSGGMjM1zom6at8Th5G6xQTTWTQcta0APc\nW6AUDPrQqBHj4OvYcT3wuAd4jOqB7yZTU1Pc/eIDOqtsWE2JLbEOBEO4jNU4g1BXn7qehLIs8/6n\nFwjVFZGzgw5CG4mEw/gDASYGBilcCtDR1ILRaKSgoIC1OK3LNhIOh/nr//0jqnGZooJmFJsk/wXv\nEvO2Auraeh6NLRJibu4zenqKmZmfwqddoLatIm6ymh6dZXkkyBPfeuqhN1an08mVm+doaLdQvr8T\nT2ho2+fmWlnl1mUnbQ3P4HA4tv39OxUIBHj3gy9Y9jlQqfXEguOc+HYFpaUPD23t1tdesmylHvju\nuXMhJFVxcTF1R57ji4kQQxPz267ZPjnn5OLwCqaCipQmb4DFxUWcajklyRtApVZjsVhoOHQQr07J\nvvsLdHZSM31mZob6fVbqa3QsLw8TjW3cBzLPlENsaQK/3/3Q/4dCAWZn+zh6NJellUX8ukXqO6q2\ndKVZVFFIboOBz65eeHBTMhAIcPXmRxzosLIvN/F7FTa7iZZDudy4/TFerzfh/SRKr9fz3VPdPN2t\n4XDLGt97rvGR5C3cIxL4HlZQUED3yf/Nsr6Kj2/NMjK5QCi8cQuqSCTKxOwSvQMzjEbyOPjMC9hs\nqb+pNTQxjqk89bWilUol6uJ8xicndryvsVu3KLJaqa2tpLZWjdt1C5/fs+62kiSRr1CyND8K3PvE\n4XRO4nJd5JlnCiksdDDjGaW2rWJbbyqFxQ40+RHGxu/tt//mZfZXKrHn7Pzeh8VqpLxex41bX2Sk\nYYtWq6WyspK6ulpycnLSfvxsIcbA9zidTsfB7qN4PC1MfDXCR4O30UohbDoJrVIGWSYsK3AHZXwR\nJTnF1dQ+UZe2F00oFGLc46S0MD1djHJKi7n96Q0a6nZ2PJ/Lhcl2rxdoeXkpOfs8DN4ZZ3lZiUqV\nh05vRqP+5v6DXq1jzjnFgtFEJDJBebmazs6DmM1mrt+8Rl6ZJaGpfEUVDkY+G8JoMBGQx2msLN/R\neT2075I85mfGmJqaijszR8gMkcAfExaLhaa2Dhpb2x/MB753AxD0KhXFFgsmkynt84HdbjdKW/qO\nqzMamCNKIBBI6kwLs8VCZ+cBPB4Pc7NOnM4ZlpejSAo1sizjDbpRGh20tBRTWdmK5X6RrFAoxOTi\nV7Q0bb0o2L8zmAwozBGu9X9GY9fmzaUTUVG9j7s3b4kEvkuJBP6YkSTpweKN3cDtcSNZUze7JRaL\nIcsyCkl6sIBHaTPj8Xh2NOfZaLPh9fux/8fP0WKxPEjO0UiEcCSCJElMLy+j6eigqfXhlaxutxuD\nXYV6gyl+W6G1KJkZGSIv/4mE97ERe46FqDSGy7Vxz1Mhc0QCFzLK5VtF60heFxmvx8PyipsVVwCX\nK0AkKnOv0G4Mg0GN3aZnLehnZWVl3VonW1Xe1MT0hx8+ksD/nVKlQqlSIcsyi7LM4YqKR7YJh8Mo\nNTv79BHwBzHZ5aRffX/NlqfetOepkDkigQsZFYnFHmpBlghZlllaWmJ0bBHPqgKFKgeNbh9GuxGl\n4psZHaFwkIUVPwvjc/g+u0JubgFqtZTQ6tKioiJuGwx4fD4scdqYTTudmMvLH1yZ/ztJkojFdnaT\ncNXjxmzV7Ggfm7FYtbhmF4FH34CEzBKzUISMUkgS7GCWg9/v59r1Qa7d8hCmgn15jdjsBRj0loeS\nN4BGrcNs3ofVVkiu4wjLHiP/+Od1BgYGiUY3nga4HpVKRcfTT/Ol14trdXXD7aadTmZ1Otq6u9d9\nXqvVEvJvPDNoK1Y9npQOien0WvwBd/wNhbQTCVzIKINGRziY2GKapcUl+i7dxRsoJDevFr1+a2Pp\nsWAYjVaPwWgjb/8x+q6Fef9c34NqiFuVn5/Pwe9+lyFZ5sbMDAsrK6wGAnj9fqaWlrg8M4MzJ4cj\n3/nOhv0q7XY7UlDDqse3rWN/TZZlPIt+cuzrN6ZIBoVCyshUQiE+MYQiZJTdYiG8MrXt75ufX+DG\nrUUs++ofmq63FTGXF0P+/VZpag1FpR0sLYzy/rlLPHuyc93l6RvJy8vjxIsvMjc3x9TwMDNuN5Ik\nYampoaOmhn0bdPz5miRJVBXXMT1+h5rm7d8LcC6uYFbnoNakbgglEo6iUm39ZyKkj0jgu8za2hqL\ni4usLC2xMjfH2v2rQo1Oh83hYF9eHrm5udtKMruZxWIhOrq91X4ul4v+gQVs+xpQqbeXuGLRKPhD\n6PQPDznk5lewtAAffXyFU88e3lbdDYVCwf79+9m/P7EKkCXFpQx+2o+/wv9Q7ZN4YrEY00MLVJc1\n43XP4kjNQla8Xj8Wo5hGuBuJBL5LuFwu7g4OMjM4iEWWMSqV5BsMaO5XXwv7fKwODDAaiXAdcNTU\nUNXQkPWr1EwmE+aYAp/bg9EafwVhJBzm1sAEBkvNtpM3gHdpjjxd3rrzznPzK5iZ9DAwcIeWltSW\nD/h3Wq2W9tpurn3xKQ3dFegN8T9RxGIx7lz7CoeuguKKEoamtv8pZqu8rjAlcT5JCJkhEniGRaNR\nBgcGGL18mUKNhva8PFQbXP1Z7xctisZiLIyP03fnDvtbW2lqbd12b8rdQpIkGovLuDQ+jbElfgL/\nanSStWge9g3Ks8YTmJihJqd5w+fzCw9w+UYvxcXLcYc/kqmoqIhI9BD9n35BaVMeuY6cDacFet2r\njN6eJk9RQltrO7FYDP+AkmAwhE6X3KGUcDiCa1GmvVY0Vd6NRALPIL/fT99HH6GYn6fV4dhyFx2l\nQkFhTg75sRijN2/y8cQE3SdOrDtNLRuUFJdw6X9GWKsJoN1kaCgYCDAx7cOWU5XQcXwuJ7pVGUvJ\nxslIpVKjNdbTf+sux4+l96qzrLQMo8HI4MgAkwN3yC01Yc21olYriUZjrHp9LI67kQIaakvbqCiv\nRJIkFAoFRY46pieGqKpNbiOP2WknjpwatBu0oBMyS8xCyZBAIMDF997D6nJRX1SUUAs0pUJBdWEh\nBWtr/M+77+LxrF9MabfTaDR8q6ya2f7bm243P7+EpFx/+COeWDSK+8s71O5vibvgxb6vkNFxH6ub\nTA9MldzcXI52fZtjbT0YfYUs3gowdmmZ2eteYtMmOsqP0nPsu1RWVD10HuVl1cyORQj4k1dedW0t\nzMRwgKqKuqTtU0iuhBP4mTNnaGhooKOjg9OnT297CtbjLBaL0ffxx+zz+ynK3flH03y7naJYjL7/\n/u8H9U2yTVVFJYUhBQvjk+s+L8syE1MrmM2JNRlw3h2iWOnAaov//QqFAtQlTE5OJ3SsZLBYLDQ3\ntnKs+2lOHD3F8SMn6ezoIj8/f903IKPRSE35IW73zyVtyt/gzRnK9x/M2k92j4OEE3hPTw8DAwNc\nvnwZn8/HO++8k8y49rThoSHk2VmKk5C8v5Zvt6N3ufjy5s2k7TOdJEmiq7kNeWiK5bn5R54PBoOs\nhVUJ3bhcnhjFMBugrLgx/sb3GU25TM9m1+KVivJKtLFSBm9O7TiJ3/lyGjlQQE11bZKiE1Ih4QR+\n8uTJB30Ln332Wc6fP5/MuPas1dVVhvv6qN5O+/ItqnA4mLp+PWs7IBmNRk50HCLcf5fF/7j69fl8\nSIrt3biUZZml0WHUo8s0VnWjUm39Rq/BYGV+Pv3NDHZCkiQOdhwh6i3i5tWJba8uhXs14b+8MYF/\nKYdDB5/cVd3qhUcl5bdz9uxZnn/++WTsas8bu3uXXElCk4JZIyqlkgKNhq8GB5O+73SxWCz0dB7G\n8NUcY5euE7rfMisQCIJi63Pf13yrzF25jG0mQkvVEdTq7d2EU6nUhCKqrBsaVCqVdH7rCWzqFqbH\n75W23erV+ML8Cl/0TqCXG+ju/HbWzmx6nGx65+zkyZPMzc098v+vv/76g4T92muvYTabeemll1IT\n4R4SiUQYv3WLph2UMY3HYbdzbWiIYEdmO4vvhMlk4kT3UYbvjnCl9zKqknx8MRlJip/AA1433ukp\npFk3B/IOkLuDOtaSpEroKjbTFAoFDQ1NAHz6+RRffTmGo0SLfZ8Rs9WIWn3vZR+JRPG6fbiWfcxO\nBtGrHLQ3nCI3iUN7QmrtqKnx22+/zdmzZ/nwww83TBaSJPGb3/zmwdfHjh3j2LFjiR5y11GpVEQi\nWytG5Pf7mRsaIj+F3d0BllZX2VdZmZSbT9s5v1QIh8O4PW5GpqZwhfVorTaUWg1KpQruF8KKhsNE\nQyHkwBqqMFj0NgwGKwrF5qsp83OVLCxtnKBX3aM0NhRm7ZXo17+7tbU1vF4PwbVVgiE/snzvnCVJ\ngVZjQK81YTZbs26qYKb/NpOtt7eX3t7eB1+//vrrcT89JZzA33vvPX7+85/T29u76WpA0ZX+GyMj\nIyxcuEBlYWFKY5qcn8fQ3k5jS8uO97VbOn/fuTPEuQurmM15uIMugtEAMTmGAgVGtRGL3o7eaMFo\n3HpXmqY6DbfuhDZ8fnb8ff7P94+iSWGdkVTa6Hf39aeK7ZQL2I12y99mqmylK33CC3l+9rOfEQqF\nOHHiBACHDx/mrbfeSnR3jwX3wgLGNFzlmA0GnAsLKT9OOtntNowGH47CShxpOF4w6MNsUmZt8t5M\ntidu4RsJJ/Dh4eFkxvFYCIdC6BNYsLNdKqWSUJbdfIvHYrFAdCBtxwv4PZQ6xPxnYXcTc4TSLB11\nlWVIWXutTNHpdDjytHg8S2k5XmB1htJNltwLwm4gEngaaQ0GQmm46RKORNBs0EAgmzU3lrDqGk/5\ncUKhIDq1M+HysIKQLiKBp5E9Px9faOObZsni8fuxF6SoOHQGFRYWotc4CQZSW6PEufgVTQ0OMVYs\n7HoigaeRxWLBl4YhFL8sY0vhXPNMUalUHOmqYmm+P2VDUaurK5g009TXV6dk/4KQTCKBp5HNZgOz\nGV8Kpz6FwmH8avWeXYxRVlZKdbnM4vzdpO87Go3gWrzBk0/U78nZJ8LeIxJ4GikUCipaWphdWUnZ\nMWaWlylrasraxSdb0dXZjEk7xvJi8rrQxKJRZicv09lmp2APDj8Je5NI4GlWWlaGR6tNyVX4WijE\nkixTXpVYw4Nsodfr6XnmIDrVIAtzO78SD4WCzEx+QUezhpaWhiREKAjpIRJ4mul0OpqOHmVkaSnp\n47gjCwvUHTmC2WyOv3GWM5lMfKfnEMW5M0yN9bG25k9oP8tL0yzPX+BYt42O9uY9N/1S2NtEAs+A\n0tJSbHV1jMzOJm2fY/PzaMrKqKp+fG6+6fV6nnqqi6eP5rDqvMjsVD9+X/wa3rFoFOfiFF73BDmm\nEV54voPa2sfn5ybsHTsqZrWlA4haKOuKRCJ89sknMDFBdWHhjq78xubn8efm8sSJE0kvSJQt9SZC\noRCTk1P0D0zh8ihBYUOhsqLR6JAkBbFYlNCaF2JuiLmoKrfwxJF2JEnas1fd2fK7S9ReP7+t1EIR\nCXyHdvJHFIlEuNLXx8rgIDU5ORg3aei7nsDaGiNLS+jLyzn05JMpmTmRbS8SWZbxer14PB6cTg++\nQIhYVEalVpBjN2K1WrBa71Xey7Zz2y5xftlNJPA0SMYf0eTkJDcvXsQcCFBos2GKs4rSHwwys7KC\nS6XiwJEjVFRWpuwqci+/SPbyuYE4v2yX0mqEQvKUlJSQ/8ILTE5McLe/H3lmBoMkYVSp0NwvfhWO\nRvGFQvgliZjRSOXhwxwsK0O/zat2QRD2DpHAdwmtVkt1TQ1V1dV4PB7czzmpBAAABURJREFUbjcu\np5Og3w+yjFqrpTQ/H4vl3hCA6FUoCIJI4LuMJElYrVasViulpaWZDkcQhF1MXMYJgiBkKZHABUEQ\nspRI4IIgCFlKJHBBEIQsJRK4IAhClhIJXBAEIUuJBC4IgpClRAIXBEHIUiKBC4IgZCmRwAVBELKU\nSOCCIAhZSiRwQRCELCUSuCAIQpZKOIG/+uqrtLa20tbWxssvv4zT6UxmXIIgCEIcCSfwX/7yl9y4\ncYPr169TU1PDm2++mcy4skZvb2+mQ0ipvXx+e/ncQJzf4yDhBG42m4F7fR19Ph86nS5pQWWTvf5H\ntJfPby+fG4jzexzsaAz8t7/9LQUFBVy8eJFf/OIXyYpJEARB2IJNE/jJkydpbm5+5PGvf/0LgN//\n/vdMTExw6NAhfvWrX6UlYEEQBOE+OQn6+/vlrq6udZ+rqqqSAfEQD/EQD/HYxqOqqipu7k24J+bw\n8DA1NTVEIhH+9re/8cILL6y73cjISKKHEARBEDaR8Bj4r3/9a5qbmzly5AiRSIQf//jHyYxLEARB\niEOSZVnOdBCCIAjC9qVlJeZeXvRz5swZGhoa6Ojo4PTp0wQCgUyHlFR///vfaWxsRKlUcvXq1UyH\nkzS9vb00NDRQU1PDH//4x0yHk1SvvPIKDoeD5ubmTIeSEpOTkzz11FM0NjZy/Phx3nnnnUyHlDTB\nYJCuri7a2tro7u7mjTfe2PwbknETMx6Px/Pg37/73e/kV199NR2HTYsPPvhAjkajcjQalX/0ox/J\nf/rTnzIdUlLdvn1bvnPnjnz8+HH5ypUrmQ4nadra2uTz58/LY2Njcl1dnby4uJjpkJKmt7dXvnr1\nqtzU1JTpUFJidnZWvnbtmizLsry4uChXVFQ8lGOync/nk2VZloPBoNzY2CgPDw9vuG1arsD38qKf\nkydPolAoUCgUPPvss5w/fz7TISVVfX09tbW1mQ4jqdxuNwDHjh2jrKyMnp4ePv/88wxHlTxPPvkk\ndrs902GkTEFBAW1tbQDk5ubS2NjI5cuXMxxV8hgMBgBWV1eJRCJotdoNt01bMavHYdHP2bNnef75\n5zMdhhDHpUuXqK+vf/D1gQMH6Ovry2BEQqJGRkYYGBjg0KFDmQ4laWKxGK2trTgcDn76059SUlKy\n4bZJS+B7edFPvHMDeO211zCbzbz00ksZjDQxWzk/QdhtvF4v3//+93njjTcwGo2ZDidpFAoFN27c\nYGRkhLfeeotr165tuG3C88D/07lz5+JuYzAYeOWVV7JuymG8c3v77bd5//33+fDDD9MUUXJt5Xe3\nl3R2dnLmzJkHXw8MDHDq1KkMRiRsVzgc5sUXX+Tll1/me9/7XqbDSYny8nKee+45Pv/8c9rb29fd\nJi1DKMPDwwBxF/1ko/fee48//OEP/POf/9xTY/vrkffIjFOr1Qrcm4kyNjbGuXPn6OrqynBUwlbJ\nsswPf/hDmpqaOH36dKbDSaqlpSVcLhcATqeTDz74YPM3qHTcVX3xxRflpqYmubOzUz5z5oy8vLyc\njsOmRXV1tVxaWiq3tbXJbW1t8k9+8pNMh5RU//jHP+Ti4mJZp9PJDodDPnXqVKZDSopPPvlErq+v\nl6uqquQ333wz0+Ek1Q9+8AO5sLBQ1mg0cnFxsfznP/850yEl1YULF2RJkuTW1tYHr7t3330302El\nRX9/v9ze3i63tLTIPT098l/+8pdNtxcLeQRBELKUaKkmCIKQpUQCFwRByFIigQuCIGQpkcAFQRCy\nlEjggiAIWUokcEEQhCwlErggCEKWEglcEAQhS/1/esCpMdjHkqwAAAAASUVORK5CYII=\n", - "text": [ - "" - ] - } - ], - "prompt_number": 165 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Supervised Learning" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To be able to assess our classifier better, We have resampled our data to include equal number of __fair__ and __unfair__ apps. We will shuffle the records and do 10-fold validation on it. " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# first get the feature matrix\n", - "# from Luis's random sampling of the dataframe\n", - "\n", - "appData\n", - "\n", - "X_resampled = trimDataFrame(appData)\n", - "\n", - "X_resampled\n", - "\n", - "X_for_classifier = min_max_scaler.fit_transform(X_resampled).astype('float64')\n", - "\n", - "np.random.shuffle(X_for_classifier)\n", - "\n", - "n_sample, n_features = X_for_classifier.shape" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 166 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# setting up the cross validation\n", - "from sklearn import cross_validation\n", - "kf = cross_validation.KFold(n_sample, n_folds=3)\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 167 + "prompt_number": 1124 } ], "metadata": {} diff --git a/ObidroidMDSPlotsWithD3.ipynb b/ObidroidMDSPlotsWithD3.ipynb new file mode 100644 index 0000000..7bab1d8 --- /dev/null +++ b/ObidroidMDSPlotsWithD3.ipynb @@ -0,0 +1,1404 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Obidroid Multi Dimensional Scaling (MDS) Notebook" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Loading App Data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "I shall be using the previously exported `exports/appFeatures.csv` data for this notebook" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%pylab --no-import-all inline" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n" + ] + } + ], + "prompt_number": 56 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%doctest_mode" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Exception reporting mode: Context\n", + "Doctest mode is: OFF\n" + ] + } + ], + "prompt_number": 57 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import pandas as pd\n", + "import numpy as np\n", + "from pandas import Series, DataFrame\n", + "\n", + "## Load the appFeatures file\n", + "main_appData = pd.read_csv('exports/appFeatures.csv')" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 58 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# This cell creates a dataframe with the same amount of unfair and fair apps, where the fair apps are randomly selected\n", + "# TODO - Create a method that implements k-fold validation for app selection\n", + "import random\n", + "\n", + "## create unfair apps dataframe and count\n", + "df_unfair = main_appData[main_appData.appLabel == 'unfair']\n", + "unfair_count = df_unfair.appLabel.count()\n", + "\n", + "## get same number of random fair apps\n", + "df_randomly_fair = main_appData[main_appData.appLabel == 'fair'].ix[random.sample(main_appData[main_appData.appLabel == 'fair'].index, unfair_count)]\n", + "#print df_randomly_fair.appLabel.count()\n", + "\n", + "\n", + "# append the newly created dataframe of unfair * 2 rows\n", + "appData = df_randomly_fair.append(df_unfair)\n", + "\n", + "# shuffle the dataframe\n", + "appData = appData.ix[np.random.permutation(appData.index)]\n", + "\n", + "main_appData.columns" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 59, + "text": [ + "Index([u'appName', u'adjectiveCount', u'avgRating', u'countCapital', u'exclamationCount', u'hasDeveloperEmail', u'hasDeveloperWebsite', u'Unnamed: 7', u'hasPrivacy', u'installs', u'price', u'revSent', u'revLength', u'appLabel'], dtype='object')" + ] + } + ], + "prompt_number": 59 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "def trimDataFrame(df):\n", + " \"\"\"\n", + " Lets create a new dataframe for appFeatures and appLabels\n", + " \"\"\"\n", + "\n", + " ## for App Features\n", + " appCols = set(df.columns)\n", + " appCols.remove('appName') # remove app Names column\n", + " appCols.remove('Unnamed: 7') # removing a weird unnamed column\n", + " appCols.remove('appLabel') # removing the label column\n", + " appCols.remove('price') # removing price since most of the apps are free\n", + " appCols.remove('exclamationCount') # remove exclamation count from features, as all values seemed to be 0\n", + " \n", + " df_trim = df[list(appCols)]\n", + " \n", + " # -- boolean\n", + " df_trim['hasPrivacy'].astype(bool)\n", + " df_trim['hasDeveloperEmail'].astype(bool)\n", + " df_trim['hasDeveloperWebsite'].astype(bool)\n", + " \n", + " # -- integer\n", + " df_trim['adjectiveCount'].astype(int)\n", + " df_trim['countCapital'].astype(int)\n", + " df_trim['installs'].astype(int)\n", + " df_trim['revSent'].astype(int)\n", + " df_trim['revLength'].astype(int)\n", + " \n", + " # -- float\n", + " df_trim['avgRating'].astype(float)\n", + " \n", + " return df_trim" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 60 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, I want to explicitly set types to all my columns as a better practice" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Explicitly casting column types in appFeatures dataframe\n", + "appFeatures = trimDataFrame(main_appData)\n", + "\n", + "\n", + "# -- boolean\n", + "appFeatures['hasPrivacy'].astype(bool)\n", + "appFeatures['hasDeveloperEmail'].astype(bool)\n", + "appFeatures['hasDeveloperWebsite'].astype(bool)\n", + "\n", + "# -- integer\n", + "appFeatures['adjectiveCount'].astype(int)\n", + "appFeatures['countCapital'].astype(int)\n", + "appFeatures['installs'].astype(int)\n", + "appFeatures['revSent'].astype(int)\n", + "appFeatures['revLength'].astype(int)\n", + "\n", + "# -- float\n", + "appFeatures['avgRating'].astype(float)\n", + "\n", + "\n", + "appFeatures" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
adjectiveCounthasPrivacyrevLengthcountCapitalhasDeveloperWebsiteinstallshasDeveloperEmailavgRatingrevSent
0 4 True 601 1 True 30000000 True 4.051 -3
1 13 True 1139 11 True 30000000 True 4.351 2
2 23 True 2223 20 True 3000000 False 4.555 -4
3 10 False 804 5 True 30000000 True 4.623 8
4 22 True 1867 16 True 7500000 False 4.046-11
5 18 False 1162 6 True 30000000 True 4.595 1
6 18 True 1522 60 True 30000000 True 4.526 -4
7 13 False 1895 19 True 30000000 False 4.039 -5
8 11 True 1195 10 True 3000000 True 4.400 -2
9 19 True 1488 11 True 300000 True 3.935 -4
10 18 False 1864 35 True 3000000 True 4.075 -5
11 19 False 2049 14 True 750000 False 3.983 -2
12 8 False 417 2 True 30000000 True 4.238 1
13 16 False 1276 11 True 3000000 True 3.915 -3
14 13 False 1210 12 True 750000 True 4.050 -3
15 20 True 2038 24 True 750000 True 3.795 -7
16 12 False 1044 10 True 7500000 True 3.997 1
17 15 True 1245 13 True 3000000 True 3.212 -5
18 2 False 225 2 True 3000000 True 2.611 -1
19 15 False 1120 10 True 30000000 True 4.547 -3
20 22 True 1406 11 True 3000000 True 2.671 4
21 13 True 1063 10 True 750000 False 4.045 -3
22 7 False 855 10 True 750000 True 3.555 -9
23 17 True 2147 38 True 3000000 True 4.590 -5
24 12 True 1189 13 True 7500000 True 4.258 -9
25 19 False 1804 8 True 750000 True 4.428-10
26 26 False 1514 5 True 3000000 True 4.401 5
27 12 True 1272 12 True 3000000 True 4.275 -6
28 17 True 1413 14 True 750000 True 4.149 -8
29 7 True 610 2 True 300000 True 4.396 -3
30 14 True 1145 5 True 3000000 True 4.113 2
31 14 False 1413 14 True 30000 True 4.240 2
32 2 True 573 14 True 300000 True 4.241 -4
33 12 True 1387 16 True 3000000 True 3.989 -6
34 19 True 1336 7 True 75000 True 4.310 -7
35 7 True 817 5 True 3000000 True 4.451 5
36 29 True 2205 16 True 300000 True 3.916 -9
37 7 False 541 3 True 300000 True 4.761 1
38 6 False 310 1 True 300000 True 4.158 0
39 6 False 880 4 True 300000 True 2.972 -4
40 5 False 583 4 True 300000 True 3.903 -6
41 19 False 1888 20 True 3000000 True 3.433 -9
42 13 False 1122 4 True 3000000 True 4.412 -3
43 15 True 1613 21 True 3000000 False 4.461 15
44 5 False 1014 11 False 300000 True 3.564 -2
45 8 False 1115 6 False 3000000 True 4.131 5
46 6 True 437 8 True 30000 True 3.550 -1
47 2 True 307 0 True 3000000 True 4.435 1
48 13 True 991 4 True 300000 True 4.233 -3
49 7 False 578 6 True 3000000 True 3.975 1
50 10 True 962 7 True 300000 True 3.926 4
51 13 False 1267 6 True 3000000 True 4.590 2
52 9 False 1300 8 True 300000 True 3.601 -9
53 16 False 1051 12 True 300000 True 3.701 3
54 16 True 1822 10 True 300000 True 2.931-13
55 7 False 535 0 True 3000000 True 4.564 0
56 11 False 1075 8 True 7500000 True 4.179 -7
57 6 True 691 4 True 3000000 True 4.466 7
58 7 True 991 5 True 750000 False 4.340 -3
59 7 False 805 14 True 300000 True 4.539 3
...........................
\n", + "

323 rows \u00d7 9 columns

\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 61, + "text": [ + " adjectiveCount hasPrivacy revLength countCapital hasDeveloperWebsite \\\n", + "0 4 True 601 1 True \n", + "1 13 True 1139 11 True \n", + "2 23 True 2223 20 True \n", + "3 10 False 804 5 True \n", + "4 22 True 1867 16 True \n", + "5 18 False 1162 6 True \n", + "6 18 True 1522 60 True \n", + "7 13 False 1895 19 True \n", + "8 11 True 1195 10 True \n", + "9 19 True 1488 11 True \n", + "10 18 False 1864 35 True \n", + "11 19 False 2049 14 True \n", + "12 8 False 417 2 True \n", + "13 16 False 1276 11 True \n", + "14 13 False 1210 12 True \n", + "15 20 True 2038 24 True \n", + "16 12 False 1044 10 True \n", + "17 15 True 1245 13 True \n", + "18 2 False 225 2 True \n", + "19 15 False 1120 10 True \n", + "20 22 True 1406 11 True \n", + "21 13 True 1063 10 True \n", + "22 7 False 855 10 True \n", + "23 17 True 2147 38 True \n", + "24 12 True 1189 13 True \n", + "25 19 False 1804 8 True \n", + "26 26 False 1514 5 True \n", + "27 12 True 1272 12 True \n", + "28 17 True 1413 14 True \n", + "29 7 True 610 2 True \n", + "30 14 True 1145 5 True \n", + "31 14 False 1413 14 True \n", + "32 2 True 573 14 True \n", + "33 12 True 1387 16 True \n", + "34 19 True 1336 7 True \n", + "35 7 True 817 5 True \n", + "36 29 True 2205 16 True \n", + "37 7 False 541 3 True \n", + "38 6 False 310 1 True \n", + "39 6 False 880 4 True \n", + "40 5 False 583 4 True \n", + "41 19 False 1888 20 True \n", + "42 13 False 1122 4 True \n", + "43 15 True 1613 21 True \n", + "44 5 False 1014 11 False \n", + "45 8 False 1115 6 False \n", + "46 6 True 437 8 True \n", + "47 2 True 307 0 True \n", + "48 13 True 991 4 True \n", + "49 7 False 578 6 True \n", + "50 10 True 962 7 True \n", + "51 13 False 1267 6 True \n", + "52 9 False 1300 8 True \n", + "53 16 False 1051 12 True \n", + "54 16 True 1822 10 True \n", + "55 7 False 535 0 True \n", + "56 11 False 1075 8 True \n", + "57 6 True 691 4 True \n", + "58 7 True 991 5 True \n", + "59 7 False 805 14 True \n", + " ... ... ... ... ... \n", + "\n", + " installs hasDeveloperEmail avgRating revSent \n", + "0 30000000 True 4.051 -3 \n", + "1 30000000 True 4.351 2 \n", + "2 3000000 False 4.555 -4 \n", + "3 30000000 True 4.623 8 \n", + "4 7500000 False 4.046 -11 \n", + "5 30000000 True 4.595 1 \n", + "6 30000000 True 4.526 -4 \n", + "7 30000000 False 4.039 -5 \n", + "8 3000000 True 4.400 -2 \n", + "9 300000 True 3.935 -4 \n", + "10 3000000 True 4.075 -5 \n", + "11 750000 False 3.983 -2 \n", + "12 30000000 True 4.238 1 \n", + "13 3000000 True 3.915 -3 \n", + "14 750000 True 4.050 -3 \n", + "15 750000 True 3.795 -7 \n", + "16 7500000 True 3.997 1 \n", + "17 3000000 True 3.212 -5 \n", + "18 3000000 True 2.611 -1 \n", + "19 30000000 True 4.547 -3 \n", + "20 3000000 True 2.671 4 \n", + "21 750000 False 4.045 -3 \n", + "22 750000 True 3.555 -9 \n", + "23 3000000 True 4.590 -5 \n", + "24 7500000 True 4.258 -9 \n", + "25 750000 True 4.428 -10 \n", + "26 3000000 True 4.401 5 \n", + "27 3000000 True 4.275 -6 \n", + "28 750000 True 4.149 -8 \n", + "29 300000 True 4.396 -3 \n", + "30 3000000 True 4.113 2 \n", + "31 30000 True 4.240 2 \n", + "32 300000 True 4.241 -4 \n", + "33 3000000 True 3.989 -6 \n", + "34 75000 True 4.310 -7 \n", + "35 3000000 True 4.451 5 \n", + "36 300000 True 3.916 -9 \n", + "37 300000 True 4.761 1 \n", + "38 300000 True 4.158 0 \n", + "39 300000 True 2.972 -4 \n", + "40 300000 True 3.903 -6 \n", + "41 3000000 True 3.433 -9 \n", + "42 3000000 True 4.412 -3 \n", + "43 3000000 False 4.461 15 \n", + "44 300000 True 3.564 -2 \n", + "45 3000000 True 4.131 5 \n", + "46 30000 True 3.550 -1 \n", + "47 3000000 True 4.435 1 \n", + "48 300000 True 4.233 -3 \n", + "49 3000000 True 3.975 1 \n", + "50 300000 True 3.926 4 \n", + "51 3000000 True 4.590 2 \n", + "52 300000 True 3.601 -9 \n", + "53 300000 True 3.701 3 \n", + "54 300000 True 2.931 -13 \n", + "55 3000000 True 4.564 0 \n", + "56 7500000 True 4.179 -7 \n", + "57 3000000 True 4.466 7 \n", + "58 750000 False 4.340 -3 \n", + "59 300000 True 4.539 3 \n", + " ... ... ... ... \n", + "\n", + "[323 rows x 9 columns]" + ] + } + ], + "prompt_number": 61 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Unsupervised Learning" + ] + }, + { + "cell_type": "heading", + "level": 4, + "metadata": {}, + "source": [ + "Scaling the feature vector" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# get all the rows for unsupervised learning\n", + "appData_all = trimDataFrame(main_appData)\n", + "\n", + "appData_all.head()\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
adjectiveCounthasPrivacyrevLengthcountCapitalhasDeveloperWebsiteinstallshasDeveloperEmailavgRatingrevSent
0 4 True 601 1 True 30000000 True 4.051 -3
1 13 True 1139 11 True 30000000 True 4.351 2
2 23 True 2223 20 True 3000000 False 4.555 -4
3 10 False 804 5 True 30000000 True 4.623 8
4 22 True 1867 16 True 7500000 False 4.046-11
\n", + "

5 rows \u00d7 9 columns

\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 62, + "text": [ + " adjectiveCount hasPrivacy revLength countCapital hasDeveloperWebsite \\\n", + "0 4 True 601 1 True \n", + "1 13 True 1139 11 True \n", + "2 23 True 2223 20 True \n", + "3 10 False 804 5 True \n", + "4 22 True 1867 16 True \n", + "\n", + " installs hasDeveloperEmail avgRating revSent \n", + "0 30000000 True 4.051 -3 \n", + "1 30000000 True 4.351 2 \n", + "2 3000000 False 4.555 -4 \n", + "3 30000000 True 4.623 8 \n", + "4 7500000 False 4.046 -11 \n", + "\n", + "[5 rows x 9 columns]" + ] + } + ], + "prompt_number": 62 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from sklearn.preprocessing import MinMaxScaler\n", + "min_max_scaler = MinMaxScaler()\n", + "\n", + "print(appData_all.columns)\n", + "#print appData_all\n", + "\n", + "# scale the dataframe\n", + "X_scaled = min_max_scaler.fit_transform(appData_all)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Index([u'adjectiveCount', u'hasPrivacy', u'revLength', u'countCapital', u'hasDeveloperWebsite', u'installs', u'hasDeveloperEmail', u'avgRating', u'revSent'], dtype='object')\n" + ] + } + ], + "prompt_number": 63 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from time import time\n", + "import pylab as pl\n", + "from matplotlib import offsetbox\n", + "from sklearn import (manifold, datasets, decomposition, ensemble, lda,\n", + " random_projection)\n", + "from mpld3 import enable_notebook\n", + "from mpld3 import plugins\n", + "enable_notebook()" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 64 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Plot D3 scatter\n", + "def plot_d3(X, title=None):\n", + " x_min, x_max = np.min(X, 0), np.max(X, 0)\n", + " X = (X - x_min) / (x_max - x_min)\n", + " \n", + " fig, ax = plt.subplots(subplot_kw=dict(axisbg='#EEEEEE'))\n", + " fig.set_figwidth(12)\n", + " fig.set_figheight(8)\n", + "\n", + " scatter = ax.scatter(X[:,0],\n", + " X[:,1],\n", + " c=['red' if main_appData.iloc[i]['appLabel'] == 'unfair' else 'green' for i in range(X.shape[0])],\n", + " s=75,\n", + " alpha=0.2,\n", + " cmap=plt.cm.jet)\n", + " ax.grid(color='white', linestyle='solid')\n", + "\n", + " ax.set_title(\"Scatter Plot of Unfair/Fair Apps\", size=24)\n", + "\n", + " labels = [main_appData.iloc[i]['appName'].decode('ascii', 'replace') for i in range(X.shape[0])]\n", + " tooltip = plugins.PointLabelTooltip(scatter, labels=labels)\n", + " plugins.connect(fig, tooltip)" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 65 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "print(\"Computing MDS embedding and plotting with D3\")\n", + "clf = manifold.MDS(n_components=2, n_init=1, max_iter=100, verbose=1)\n", + "t0 = time()\n", + "\n", + "X_mds = clf.fit_transform(X_scaled)\n", + "print(\"Done. Stress: %f\" % clf.stress_)\n", + "plot_d3(X_mds,\n", + " \"MDS embedding of the digits (time %.2fs)\" %\n", + " (time() - t0))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Computing MDS embedding and plotting with D3\n", + "Done. Stress: 776.610632" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n" + ] + }, + { + "html": [ + "\n", + "\n", + "\n", + "
\n", + "" + ], + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAs0AAAHyCAYAAAAQi/NkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8VPW9P/7XmX1LMpnsEJIQIGGRAAooyuoCKKUu1Ras\nV4u1RW+vS3up1dpFtPUW6s+ltpdLtb8iCAqPtlYWwUoVIi6ALMoSWbMnZJssM5PZ5/P9I85ITCYT\nMpOcLK/n45HHg8zZ3ufDSfKaM5/z+UhCCAEiIiIiIgpLIXcBRERERET9HUMzEREREVEEDM1ERERE\nRBEwNBMRERERRcDQTEREREQUAUMzEREREVEEDM1E1C9973vfg0KhwMqVK+UuJeZ27tyJuXPnIiMj\nAwqFAgqFAnv37pW7rG7z+/146aWXcPnll8NsNofOIVpPPvkkFAoFli1bFoMq5TWYzoWI2jA005Cy\nbds23HzzzbjssstgMpmQmJiIcePGYdGiRVi1ahUOHjwod4k4evQonnzySbz66qtdrvfCCy9g5cqV\nKC0t7aPKeiYYqC7+0uv1GDduHBYvXoytW7d2ub0kSTGrpbS0FE8++SRefPHFmO3zUu3YsQOLFi1C\nYWEhamtrkZaWhvT0dGi12ojbBoPYyJEjY7rupXrsscfw8MMP4+jRo3C5XEhPT0d6enrM9h+r//Ot\nW7dCoVDglltuCb02d+7cTq/Jr3+99dZbMakhltdvV7xeL1JTU6FQKKBSqVBRUdEnxyUaSlRyF0DU\nFxwOBxYuXIgPP/ww9JpK1Xb5nz59GqdOncLOnTuRkJCAxsZGucoE0Baan3rqKcydOxf33HNP2PVe\neOEFlJWVYd68ecjOzu7DCnsmISEBer0eAGCz2XDq1CmcOnUKO3bswMKFC7Ft2zYolcperaG4uBhP\nPfUUcnJy8PDDD/fqscL53e9+BwC4++67sXr1aqSmpl7yPi4liMU6tDmdztCbjhdffBHf//73YTAY\nYrLvlJQUjB07FhkZGTHZ37Zt2wAAixcv7rBMp9PBbDaH3TZ4rfZUrM8lkrfffhv19fUAgEAggNde\new2PPfZYnxybaKjgnWYaEu677z58+OGHMBgM+OlPf4rt27ejoaEBdrsdlZWV2LlzJ+666y6YTCa5\nS70kfXUXKxZefPFFVFVVoaqqCvX19diyZQtuvPFGAMCuXbuwevXqXq+hP7TXF198AUmScN999/Uo\nMMvt/Pnz8Pl8MBgMWL58ecwCMwD86Ec/wsmTJ/Hb3/426n0JIfD2229DoVBg0aJFHZYvWbIkdD12\n9jV//vyojh/Lc+mO4CdTEyZMaPc9EcUOQzMNerW1tdi8eTMAYM2aNVi1ahVuuukmxMXFAQDS09Ox\nYMECrF+/HmfOnJGz1EsmhIAQQu4yLplWq8Xtt9+O7du3hz7W//3vf9/rx+0PbdXQ0AAAGDFihMyV\n9EzwbmZqaio0Go3M1YR3+PBhVFdXY8qUKTHtOtIfNTQ0YMeOHZAkCZs2bYLJZMKpU6dw4MABuUsj\nGlQYmmnQO3ToEIC2u4ydfUx7MZ1OF3aZ3+/Hn/70J9x6663Iy8uDXq9Hbm4ubr75ZmzatAk+n6/d\n+sePH8fTTz+NWbNmISsrC3q9Hnl5ebj55pvx5ptvdnoMhUKBe++9FwCwZ8+eDv0s9+7dG+qrWlZW\nBgCYN29eu3XmzZvXYb8+nw/PP/88vvnNbyI7OxuJiYm45ppr8LOf/Qw2m63TWoJ9P9evXw+n04nf\n/OY3WLRoEZKTk5GYmNhlO3aXJEm4/fbbAQDNzc2oqanp9rZCCKxduzZ0TklJSZg3bx6eeOIJOByO\nDuvn5OTg2muvBQCUlJR0aNtLvTPn9XqxatUqLFy4EBkZGaE3X7/73e86XAsXHy9Y+8iRI0Ov9fXD\nYjk5OVAoFCgsLITdbsdTTz2FefPmISEhAZMmTcIjjzyC1tbWdtusW7eu3fX19Ta8uP3279+Pxx9/\nHFdddRWGDRsGg8GACRMm4Pbbb8cHH3wQtq6uHp4LHqesrAzFxcVYsWIFZs2aBYPBgFtvvbXD+tu3\nbwcAfOMb3+hRG/Wnc4nk9ddfh9frxYwZMzBx4kTccccdALq+2/z1a/LQoUN44IEHMHHiRCQnJ2PR\nokVdbn/xNVRTU4PHH38cM2fOhNlsxsyZM/HrX/8aHo8n7PZ79uzBLbfcgjFjxkCv18NisSA/Px93\n3nkntmzZcsltQNQnBNEgt3PnTiFJklAoFOLtt9/u0T7OnDkjZsyYISRJCu0rISFBKBSK0GulpaXt\ntklKSgqtq1arhclkCq0rSZK48847OxwnPT1dmM1mIUmS0Gg0IiMjo93Xxx9/LJ599lmRnp4ulEql\nkCRJJCUltVvnW9/6Vrt9njt3Tlx11VXtatfpdKHvs7KyxMGDBzvUMmfOHCFJklizZo244YYbhCRJ\nQqVSiYSEBJGYmNjttgse59VXX+10+ebNm0N1ffrpp6HX77nnHiFJkli5cmWHbRoaGsRNN90U2rdK\npRJ6vT70fV5enjh69Gi7baZNmxb6P1EqlR3adsuWLd0+p5KSEnHllVeGjqfRaIRWqw19P336dFFS\nUhJav7y8XKSnp4uMjIzQOqmpqaFjP/LII9067q9//WshSZIYOXJkVOtmZ2cLhUIhtm7dKq6++urQ\nOajV6lB948aNE3a7PbTN5s2bRXp6etg2DLafzWZrd61ptVphMBjavfazn/2sy5qXLVvWYVlw2/fe\ne09kZWUJSZKEXq8XBoNB3HrrrR3Wnzp1qpAkqd01JcRX13Vnx/i6/nIukQTP9c9//rMQQoi9e/eG\nfje43e5OtykuLm73cxcfHy8kSRJGo7Hd77Uf/ehHwu/3d9g+eA394x//EBMnThSSJAmdTtfuGpo5\nc6aoq6vrsO2zzz7b4feRwWAIHTc9Pf2S24CoLzA006BXWVkZCpgzZ84UVVVVl7S9x+MR48aNCwWd\nN954Q1itViGEEHa7Xbz//vtiyZIlorKyst12t912m/jLX/4iysvLhd/vF36/X+zfv188/fTToeCx\nadOmDsdbt26dkCRJzJs3r8u6srOzhSRJYu/evWHX8Xq9Yvz48UKSJLFgwQLx8ssvi8rKSmG328Wm\nTZvEggULhCRJYuzYscLj8bTbNhguEhMTRUpKinjzzTeFw+EQQrQF8e6KFJrvu+++0B/P+vr60Otd\nhea777479Af+1VdfFTabTfh8PlFYWChGjhwpJEkSubm5Hc5pz5493Q6dXQm2TXJysti2bZtwuVzC\n5XKJbdu2hf5vZ86c2em2wXP9+pus7ohlaA5ez3l5eeL9998XHo9HlJeXi0cffVTExcUJSZLE6tWr\nO2wbqQ1bW1vFN77xDbF582ZRXV0thGj7GdqzZ4944oknQm/YPvroo7A1hwuawetxypQp4tNPPw2F\nua9fj9XV1UKSJDFs2LAO+wn+333ve9/rtP7+di6RnDhxIhS6m5ubQ68Hfw7+9re/dbpdMDQHr+Or\nr75aHD9+XAghRE1NjfjFL34RWv5///d/HbYPXkPJyckiIyNDvPvuu8Lj8YR+twRvEixZsqTddtXV\n1aHfx/fdd584ePBg6Oe0rq5O/P3vfxf33XffJbUBUV9haKYh4ZFHHgn9AVCr1WLWrFniiSeeEG+9\n9Va7PzSdWb16tZAkScTFxYmysrKY1PPb3/5WSJIk8vPzOyz761//GrPQ/Ic//EFIkiTGjBkjfD5f\nh+Uej0ekp6cLSZLESy+91G5ZMFwoFApx6NChbp5ZR12FZo/HIywWi5AkSaSlpbVbFi40f/7550Kh\nUAiFQiHefPPNDvusrKwURqNRSJIkXnjhhXbL3n///ahD8/bt20N3Wg8fPtxh+eHDh0N3zP75z392\nWN6fQrPZbO70TuB//dd/hb0+o23DH/zgB6E3ceFq7ipoZmRkiNbW1i6P8corr4RC2dcFr2u9Xi/S\n0tI6/frVr37Vb84lkkcffVRIkiS+853vdHr8xYsXd7rdxaF59OjRwuVyhd13VlZWhzegwWtIrVaL\nL774osO2b7/9dujn5MSJE6HXgz8/aWlpoTfhRAMF+zTTkLB69Wo89dRT0Ol08Pl82LdvH5555hnc\ncsstSEpKwrXXXht2XNY1a9YAAH784x/H7OGtBx54AHq9HmfPnoXX643JPjvzhz/8AQDwm9/8ptPh\n3NRqNX74wx8CQNiHhubPn4/LL7886lrERQ/h1dfX449//COuvvrq0BB/v/zlL7u1n40bN0IIgQkT\nJrQbfzdo2LBhuO+++wD0zggCGzZsAADceOONmDJlSoflU6ZMCfWd7+8jGNx///1ITk7u8Hqw33Kw\n33wsrVixAkBbn/+eePjhhyMOB9ed/swulwt1dXWdfoXr5/91fXEuXfH7/XjttdcAtA1heLHg9++8\n8w7q6uq63M9PfvKTTscJ/+///m9oNBqUl5fj3//+d6fb3nrrrcjPz+/w+o033ojJkycjEAhg/fr1\noddHjRoFoG0Y0K/3myfq7xiaaUhQq9X4xS9+gcrKSmzcuBF33XUX8vLyoFAo4Pf7sWfPHtx6662h\nh/CCXC4XSktLIUkSFi5ceMnH3bt3L+644w4UFBTAYrGEHrxJSkqC0+mEEALnz5+P1Wm24/F4UFxc\nDAB48MEHQxNQfP3rpZdeAgAUFRV1up+pU6fGpJ5ly5aFzj81NRUPPfQQDh06BEmScNddd+FHP/pR\nt/Zz9uxZAMCcOXPCrnPdddcBQK+0bfD4c+fOleX4sTRp0qROXw+em9vtjhi4OiOEwNatW7F48WJM\nmDAB8fHxof/7sWPHAgAuXLgAt9t9SfuVJCni9eh2u7F7927odDrccMMNYdf73ve+B7/f3+nXc889\n1y/OJZJ3330X1dXVSEtL6/D7KTc3FzNnzoTX68XGjRu7rCPcz1JqamooEJ87d67Tdbr6OZw9e3aH\nbceOHYtp06bB4XBg7ty5WLNmTej3FFF/x8lNaEhJTEzE0qVLsXTpUgBtoWbNmjX461//CqvVinXr\n1mHOnDmhSUXOnDkDIQQkSUJubu4lHevee+/FunXrALT9YZIkCWazOTRCR21tLQKBAGprazu9UxOt\nc+fOIRAIAPhqmLBwJEkKDYX2dbG6u37x5CY6nQ45OTkYNWoUvv/97+Oqq67q9n6Cf4CzsrLCrhNc\nZrPZUF9f3+nd1J66lOOHCxr9xbBhwzp93WKxhP7tdDovaZ9+vx8LFy4M3ZmUJAkKhQIWiyU0RN2F\nCxcghEBtbe0lX1+R1t+zZ09oMqNox5CW+1wiCX6Sceedd3Y6jfndd9+Nffv2Yf369XjkkUfC7ifS\ntXzs2LGwbwC72jZ4fl/fdtWqVVi6dClOnjwZerOckZGBb37zm7j77rsxY8aMsPskkhPvNNOQlpub\ni9///vc4dOhQ6I/Oyy+/HFou9XAyjA0bNmDdunVQq9X43e9+h3PnzsHn88FqtYYmT0hJSQHQe2MH\nB4d7kiQJVVVVYe+qBb/C/VHsahi+S3Hx5Cbnz5/He++9h5dffvmSAvPFIr0R6G1yHD8YZsO9wblY\nsL5YDQ/YXc888wz+/e9/Iz4+HmvWrEFFRQW8Xi/q6+tRVVWFkpKS0Lo9ufYjXY/BWQCjHWoOkP9c\nutLc3Ix//vOfAIDnn3++06nAg12vjh49imPHjvX4WLE2d+5cnD59Ghs2bMCSJUuQkZGBCxcuYO3a\ntbjmmmvw+OOPy10iUacYmokAZGdnhz7K/eKLL0KvjxkzJhScL+WuYfAP9+OPP45HH30UOTk57Za3\ntraipqamV2eoy8/PD+0/2KVgMAj2idy9e3fYdUpLSwEAcXFxMb3LfKnHD64b62Pb7XbY7fYu162s\nrAQAjB49OqY1RBK89l944QUsX768wzTSvX33PTjJRyxCs9zn0pUtW7aEuoQEP8nq7Cuoq/71weu1\nM8F+7eE+aevptnFxcfjud7+LTZs2obKyEkePHsV//Md/AGh7E2C1WsPul0guDM1EXwp+zBgfHx96\nTavVIicnB0II7Ny5s9v7CvYP7uxBMQDYt29f2G3VajUAhLpW9HQ9nU6HkSNHQgiBd955J2LNA8WY\nMWMAAJ999lnYO67Bj9O/Hlq727bdOf6ePXvC3l0Md/xoXRyAP/7447Dr+Xy+0KQ+fR2ai4qKIElS\n2Gu/qwlBonX8+HGUlpZiwoQJXXYb6C45zyWSYAh+7LHH0NjYGPbr9ddfB9D2AK3f7++wHyEECgsL\nOz1GbW0tTp06BUmSwl5H4bYFvmqf7lyDEydOxF//+leMGDECHo8n9IAjUX/C0EyDXnFxccSPJq1W\naygUf/0P5H/+538CaLvb1N3RBNLS0gCg05n/vF4vHnvsMQCdf6QbnPI30kfwwfW66ibwwAMPAACe\ne+65Lu8I+f1+NDU1dXm8/uK73/0uFAoFAoEAduzY0WF5ZWUlXnnlFQBtD3tdLHinMJq7WMFRCZqa\nmjoNTYcPH8a2bdsgSVKH40crLy8PkydPhhACq1atCrvepk2bUFFRAaVSGZpxsa+kpaVBCNHptW+z\n2bBy5cpeO3asZgEMkvNcunL27Fl89NFHkCQJS5YsQXx8fNivm2++GQaDATU1NWHfPD///POdPsj4\n3HPPwePxYMSIEaGHW7/uH//4B06fPt3h9V27duHo0aNQKpWhZ0QAdDlLoN/vD/UV704XJKK+xtBM\ng96JEycwadIkXHvttXj99ddRVFQEt9sNn8+HTz75BP/zP/+DOXPmoKKiAiqVCg8++GC77R9++GHk\n5eXB4XBg6tSp2Lx5cyh02e127NmzB0uWLAl9HA58NfrA5s2b8ac//QlVVVXw+Xw4fPgw5syZg7Nn\nz8JoNHZab/CuTFFREbZu3QqXy9XpesE7nuvXrw/7MfEjjzyCyZMno7W1FVdccQXWrVuH2tpaAG0P\neB0/fhzPPfccRo8eHXbIvf7msssuw1133QWg7U3Bq6++CrvdDq/Xi8LCQsycORNOpxO5ubmhNw1B\nw4cPh1arhd1ux9q1a7s9tNjFbrzxRsyePRtCCNx2223Ytm0bXC4XnE4ntm3bhvnz5wMArrnmmojT\ntl8qSZLw4osvAgDee+893Hjjjfjss8/gdrshhEB5eTlWrVqFH/zgBwDaRiwJd5e0t7oGBa/9NWvW\nYN26dbBarXC73SgsLMS0adN65ZhBsQ7Ncp5LV4JDuOXm5qKgoKDLdXU6HW666SYA4btoNDY24vrr\nr8fJkydDDzX+6le/wurVqyFJEn7+859Dpep83ACz2Yx58+Zh9+7d8Hg8cDgceOONN0JTed9xxx2h\nUUaAtracMWMG1q1bh+LiYvh8Pvj9fhw5cgQrVqzAuXPnIElSaMp7on6lLweFJpLDv/71r9Ag/hdP\n3XrxtMvByQ7WrFnT6T5OnTolpk2b1m794LSznU1W4XK5QjPxBb+C0ywnJCSIjz76qMvJSW6++eZ2\n22VnZ4ucnBzxySefhNa5eBKN4GQB2dnZHWbgKi0tFddff327WoIzvl1c//r169ttF5wEItxMft3V\n1eQmXelqRkCr1SoWLVrUrv6Lp7HubBrtoIcffji0nkqlEtnZ2SI7OzvszGmdKS0tbTeNtkqlajd9\n8JVXXtluGu2LBdfpyeQmQf/7v//b7v9QqVR2mN75jjvuEI2NjZ1u352JccLVGWlyk9raWpGWltau\ntmDbDB8+XJw6dSrsvrszIUi4dquvrxdKpVKkpKSIQCAQ9rwuZRptuc6lK4FAQOTk5AhJksSjjz7a\nrW3eeOMNIUlt01wHr4mLp9E+fPiwSEhIEJIkdbiOIk2j/eabb4qCggIhSW1TsQdn+5MkScyaNavd\nLJ9CCPHCCy+0+92jUqna/S5WKBTiiSeeuOR2IeoLHHKOBr0bbrgBpaWl2LlzJ3bv3o2zZ8+isrIS\ndrsdo0aNQmZmJmbOnIkHH3wQqampne4jLy8PH3/8Mf7whz9gz549OHbsGGprazFq1CgUFBTgO9/5\nDoYPHx5aX6vV4sCBA1i5ciV27tyJ0tJSjB07FjNmzMCyZcswefLkDg/qXGzDhg1YtWoVtm3bhrKy\nMpSXlwNAu49Qp0yZgvfeew/PPPMMTp06FRoh4+sP3WRlZeHdd9/Fhg0bsH37dhQVFeH8+fMYNmwY\nMjMzcdVVV+H222/HNddc0267ruq7VD3ZT1fHT0xMxPbt27F27Vrs2LEDn3/+Oex2OwoKCnD11Vfj\n5z//edjhxlavXo0RI0Zg06ZN7drW4XB0u7asrCzs27cPzz33HN5//3189tlnEEJg0qRJmDdvHlas\nWNHpZDIXn1s0HnjgASxevBi///3vceLECZw6dQo2mw3jx49Hfn4+7rzzztDdxXDH704Nna0TabuU\nlBQcP34cTzzxBPbu3Yvq6moUFBRgxowZuP/++0PXZ7h9d7X/rpbt3LkTgUAACxcujLiP7ra/XOfS\nlb1794bGjr/tttu6tc2iRYug1Wrh8XiwZcuW0KgaQcHfJS+//DI+/PBDVFdXY/r06fj2t7/drmvF\n1wkhYLFY8O677+L555/Hvn37cPz4cVx22WW47rrr8MQTT4SeIwi68847YTKZsHv3bhw7dgzV1dXw\neDwYO3YsJk6ciIceeqjD7yKi/kISIrrxru69917s2LEDqampnfYb3bhxI1avXg0AmDBhAp588knk\n5eVFc0giIqJ2lixZgi1btuCNN97At7/9bbnL6fdKSkqQm5sLSZI6fUAwkpycHJSVlWHPnj2hSUyI\nBruo+zQvW7YMu3btCrs8NzcXhYWF+Oyzz7BgwQI8/fTT0R6SiIgoxOfz4Z133oFare7RzJ1ERN0R\ndfeMWbNmtRvg/esuntln0aJF+OUvfxntIYmIiEIaGxvxyCOPID09vd2QkdS7enOceaL+qE/7NP/5\nz3+O+dPkREQ0tKWkpODXv/613GUMOVH27iQacPosNO/evRuvvfYaPvroow7L8vPzOx3nkYiIiHqP\nECKqO8Zz5syJYTVEfWPUqFE9mim3T0Lz559/jvvvvx+7du2C2WzusPz06dOcMlNGzz77LFasWCF3\nGUMW218+bHt5sf3lxfaXD9teXhaLpUfb9frkJmVlZfjWt76FjRs39vl0rkREREREsRD1nealS5di\n7969qK+vx4gRI7By5Up4vV4AwPLly/HUU0/BarXi/vvvBwCo1WocOHAg2sMSEREREfWZqEPz66+/\n3uXyV155Ba+88kq0h6FexDE25cX2lw/bXl5sf3mx/eXDth+Yop7cJCZFSBL7NMtIp9PB5XLJXcaQ\nxfaXD9teXmx/ebH95cO2l5fFYunR6C+93qeZiIiIiGigY2gmIiIiIoqAoZmIiIiIKAKGZiIiIiKi\nCBiaiYiIiIgiYGgmIiIiIoqAoZmIiIiIKAKGZiIiIiKiCBiaiYiIiIgiYGgmIiIiIoqAoZmIiIiI\nKAKGZiIiIiKiCBiaiYiIiIgiYGgmIiIiIoqAoZmIiIiIKAKGZiIiIiKiCBiaiYiIiIgiYGgmIiIi\nIoqAoZmIiIiIKAKGZiIiIiKiCBiaiYiIiIgiYGgmIiIiIoqAoZmIiIiIKAKGZiIiIiKiCBiaiYiI\niIgiYGgmIiIiIoqAoZmIiIiIKAKGZiIiIiKiCBiaiYiIiIgiYGgmIiIiIoqAoZmIiIiIKAKGZiIi\nIiKiCBiaiYiIiIgiYGgmIiIiIoqAoZmIiIiIKAKGZiIiIiKiCBiaiYiIiIgiYGgmIiIiIoqAoZmI\niIiIKAKGZiIiIiKiCBiaiYiIiIgiYGgmIiIiIoqAoZmIiIiIKAKGZiIiIiKiCBiaiYiIiIgiYGgm\nIiIiIoqAoZmIiIiIKAKGZiIiIiKiCBiaiYiIiIgiYGgmIiIiIoqAoZmIiIiIKAKGZiIiIiKiCBia\niYiIiIgiUMldABERUawIIdDc3AxrkxUutwsapQZJSUkwGo3QaDRyl0dEA1hUofnee+/Fjh07kJqa\nimPHjnW6zuOPP47NmzcjMTERGzduxNixY6M5JBERUadcLheOnTqGquYqlFnLUFZbBofNAbVPjYlZ\nEzFt0jTkjcyDXq+Xu1QiGoCi6p6xbNky7Nq1K+zyAwcO4IMPPsCnn36KFStWYMWKFdEcjoiIqFOB\nQACfffEZarw1KLGXoMpfhfix8Rg5aySSpybjlPMUPjr1EQ58fgBOp1PucoloAIoqNM+aNQuJiYlh\nl+/fvx+33347LBYLli5diqKiomgOR0RE1KnGxkY0+5pRa69Fc6AZphQTdDodAEAXp4Mh3YCWQAtq\nnDUoKS+Rt1giGpB69UHAAwcOYPz48aHvU1JScO7cud48JBERDUE1DTXwST7YPXb4FD5odO37L2vj\ntPAp2pZXWivh9XplqpSIBqpefRBQCAEhRLvXJEnqdN1nn3029O/Zs2dj9uzZvVkaXUSlUoXuyFDf\nY/vLh20vr1i2f+bwTBhcBgzLGAaXcHUIzYFAAMIhYFAbYNaZodPpoFarY3LsgYrXv3zY9n2rsLAQ\nhYWFUe9HEl9PtZeopKQEixcv7vRBwJdeegk+nw8//vGPAQCjRo3q9E6zJEmwWq3RlEFR0Ol0cLlc\ncpcxZLH95cO2l1cs27+yshL7z+9HuascDf4GxFni2i1vbW5FfCAecVIccuJzMGvKLGi12pgce6Di\n9S8ftr28LBZLh5u63dGr3TOuvPJK/P3vf0dDQwM2bdqEcePG9ebhiIhoiEpOToZJYYLar4bSr4TP\n5wstC/gD8Nv80Kg0MKqMSI5LHvKBmYguXVTdM5YuXYq9e/eivr4eI0aMwMqVK0P9xJYvX47p06dj\n5syZmDp1KiwWC1577bWYFE1ERHQxrVaLy/MvR8P+BjTYGtDibUFcchx8bh+8zV5Y9BZIDgnmRDNG\nZY2Su1wiGoCi7p4RkyLYPUNW/JhIXmx/+bDt5dUb7W+323Ho6CHs+3wfamw10Bq1MJvMSNQlYlzW\nOFxx2RWIj4+P6TEHKl7/8mHby6un3TM4IyAREQ0aJpMJc2bOwTVXXYPm5mY0NTVBqVTCYrEwLBNR\nVBiaiYiAmwBrAAAgAElEQVRo0FGpVEhKSkJSUpLcpRDRINGrDwISEREREQ0GDM1ERERERBEwNBMR\nERERRcDQTEREREQUAUMzEREREVEEDM1ERERERBEwNBMRERERRcDQTEREREQUAUMzEREREVEEDM1E\nRERERBEwNBMRERERRcDQTEREREQUAUMzEREREVEEDM1ERERERBEwNBMRERERRcDQTEREREQUAUMz\nEREREVEEDM1ERERERBEwNBMRERERRcDQTEREREQUAUMzEREREVEEDM1ERERERBGo5C6ABh+/3w8A\nUCqVqK+vR1lVGTw+D4wGI4anDkdiYiIkSZK5SiIiIqLuY2immLFarSipLEGjoxE1F2pQdLIIDoUD\nw8cMh86gg1lvRnlTOYbFDcNl+ZdBpeLlR0RERAMDUwtFLRAI4OCnB/H3f/0dZeVlqGmsgUPjgDJN\niThzHC58cQHj88ZDY9bA4/JAUknQF+uRPyZf7tKJiIiIuoWhmaLidrux6W+b8MqOV9AoNaLV1wpf\nqg8BfwAmjQlaixY2jQ1FF4oQ8AcwfORw2H12VFgrkOPOgVarlfsUiIiIiCJiaKao/Ou9f2HD3g1o\nzWqFRqWB0Av44/3wtfrQ6mpFbX0tYAESUxJRUlOCzJxMNLU2IT4+Hg6Hg6GZiIiIBgSOnkE91tLS\ngt0Hd8NuskOfqYfP7YPCrGi7qhSAJkUDu9sOp8cJh8sBxAM11TUQKgGP1yN3+URERETdxtBMPVZd\nXY2y5jJokjSQVBKEJKBQKwAJQABQSArAADhdTrjcLii0CnjcHgivgNKrhMlkkvsUiIiIiLqFoZl6\nzOv1wg8/NHoNAiLQFpK9bWFZqVci0BoAJMDn80Gr1sLX6oNKqULAHsCojFHQaDRynwIRERFRtzA0\nU49lZGRAF9BBI2mg8CqgidPAX++HWqWGpJKgCCjgb/RD4VNAr9bDU+sBbEBBegFG546Wu3wiIiKi\nbmNoph5LSkrCVaOvgrfeC53QwZBkgNQiwVvphTKgbLvD7NYiOZAM53EnJhon4s55d+Lq6VdDqVTK\nXT4RERFRt3H0DIrKPUvuwanVp1BUXgTJIiE5MxnNVc2wFdugdqmRE5eD6/Kuw4KZCzB58mTOBEhE\nREQDkiSEELIXIUmwWq1ylzFk6XQ6uFyuHm/f1NSETX/bhPeOvoc6Zx3gAzJMGbj28mtx04KbkJmZ\nGcNqB59o2596jm0vL7a/vNj+8mHby8tisaAn8ZehmWL2w+twOGC326FQKBAfH88xmLuJvzzlw7aX\nF9tfXmx/+bDt5dXT0MzuGRQzRqMRRqNR7jKIiIiIYo4PAhIRERERRcDQTEREREQUAUMzEREREVEE\nDM1ERERERBEwNBMRERERRcDQTEREREQUAUMzEREREVEEDM1ERERERBEwNBMRERERRcDQTEREREQU\nAUMzEREREVEEDM1ERERERBEwNBMRERERRcDQTEREREQUAUMzERFRHwgEAnKXQERRUMldABER0WDl\ndDpRW1mJlooKwO+H0miEJTsbqWlpUCh434poIGFoJiIi6gV2ux0lhw4hIxBAdnw8lEolnG43ao4f\nx9m6Ooy+7DIGZ6IBJOqf1sLCQowbNw5jxozBSy+91GG50+nEPffcgylTpmDOnDl46623oj0kERFR\nvyaEQNnx48hVq5GamAilUgkA0Gu1yElJgaGmBheqq2WukoguRdSh+eGHH8batWuxe/du/OlPf0J9\nfX275a+++iqMRiOOHDmC9evX4yc/+QmEENEeloiIqN9qaWmBzm5HnMHQ6fL0hARYz5/n30OiASSq\n0Nzc3AwAmD17NrKzszF//nzs37+/3ToJCQmw2Wzwer2wWq0wGAyQJCmawxIREfVrTqcTukAAtQ0N\nKKuoQEV1NexOZ2i5VqOByuuF1+uVsUoiuhRRheaDBw9i7Nixoe/Hjx+PTz75pN06S5cuhd/vR3Jy\nMmbOnImNGzdGc0giIqJ+r7m5GedOnIDn3DnE1dZCW1GBis8/x7niYvj9fgCATwj2aSYaQHr9QcA/\n/vGPUKlUqK6uxrFjx7Bo0SKUlpZ2+EXx7LPPhv49e/ZszJ49u7dLoy+pVCrodDq5yxiy2P7yYdvL\na7C2v9vtRrrRiMwbbkCKXo/gZ6sjADS7XHAZjTAYDMgdORImk0m2Ogdr+/dngUAALpcLgUAAQgjo\ndDp++t4HCgsLUVhYGPV+JBFFh6rm5mbMnTsXR44cAQA8+OCDWLhwIRYtWhRa59vf/ja+//3vY8GC\nBQCAK6+8Eq+++mq7O9SSJMFqtfa0DIqSTqeDy+WSu4whi+0vH7a9vAZr+5/5/HOkt7TAabVCUV2N\ndLO5XTA6UlcH38iRyJ05E/Hx8bLVOVjbv78qryjHmaozEFqB8SPH48S5E9D6tZiQOwEWi0Xu8oYU\ni8XSo+cJovpcKCEhAUBbgi8pKcG7776LK6+8st061113HbZt24ZAIIDz58/DarW2C8xERESDhd/v\nh7uuDglGI9IyM+HLyMD55mbUNzejyWZDdVMTHF4vtCNHyhqYqW9VVFag6EIREkYkICkjCXqjHsnD\nk6FN0+LwmcOhZ8Sof4u6e8YLL7yA5cuXw+v14qGHHkJycjLWrl0LAFi+fDmWLFmCkydPYurUqUhJ\nScGLL74YddFERET9USAQgCRJoa/hWVlwpabC1tICr88HjV6PHL8fAbNZ7lKpj/j9fpypPIOkzKTQ\n0INBGq0G+hQ9zpWfw+UJl8tUIXVX1KF5zpw5KCoqavfa8uXLQ/9OSEhgUCYioiFBrVYDOh1cHg90\nGg2Atm4QF/cdrq+vh0Wvl6tE6mMtLS3wq/1QqpSdLjeajGiob4Db7YZWq+3j6uhS8LFdIiKiGEoa\nORLVYT5ut7W2wmk0hro30uDn9/shKbt+2E9SSKFRVaj/YmgmIiKKobT0dHiGDcO52lo4vhyb2ef3\no6axEee9XmRPnMgRE4YQrVYL4Qn/0Jnf74cUkKD58pMJ6r96fcg5IiKioUSSJIwaPx71qakoKSmB\nx2qFQqVCQk4ORmdkcJi3ISYuLg4J6gQ47A4YTcYOy1saWpCZnAmVipGsv+P/EBERUYxJkoSUlBSk\npKTIXQr1A+NGjcOnRZ+i2dOMOHMcAMDv86OpoQkmvwk5I3LkLZC6haGZiIiIqBeZTCZMnzAd5ZXl\nqCythFPthL3SjlFpozA8Y3jbA6TU7zE0ExEREfUyg8GA/DH5GO0fDZ1Oh7TENE6jPsDwf4uIiIio\njyiVSiiVSgbmAYj/Y0REREREETA0ExERERFFwNBMRERERBQBQzMRERERUQQMzUREREREETA0ExER\nERFFwNBMRERERBQBQzMRERERUQQMzUREREREETA0ExERxUggEIDP55O7DCLqBSq5CyAiIhroHA4H\nKqoqUNlQCSEJ6FV6ZGdkIyM9g9MlEw0SDM1ERERRaGlpwadffAplghLmHDMUCgU8bg+KaotQ11iH\ngnEFDM5EgwB/iomIiHpICIFjp49Bn6pHQmJCKBxrtBokD0tGnacO1dXVMldJRLHA0ExERNRDTU1N\ncCqc0Bv0nS5PSElAyYUSCCH6uDIiijWGZiIioh5yOp1QaMP/KdVoNHD73Xw4kGgQYGgmIiLqIaVS\niYA/EHa5EAIQYJ9mokGAP8VEREQ9lJCQAMkphe1+YWu2IS0xDUqlso8rI6JYY2gmIiLqIZ1Oh6yU\nLNRX1XcIzm6XG74mH7KHZctUHRHFEoecIyIiisKonFFAMVBWUgYYAEkpwe/yQxfQ4fK8y2EymeQu\nkYhigKGZiIgoCgqFAqNzRyPOGIfyynIEAgGkJqciOzubfZmJBhGGZiIioii0trbi2OljsAVsUBra\n+i6fs55Dg60Bl+VdBp1OJ3OFRBQLDM00aLjdbrjdbigUCn4cSkR9wuv14kjREYgEgeT45K8WJAEt\njS347IvPMK1gGu84Ew0CDM004LlcLlScPQtPTQ0MALwAvEYj0kaPRlJycqTNiYh6rL6+Hi6VC0nx\nSR2WxSfGo661DlarFcn8XUQ04DE004Dmdrtx7tAhDPP5kGSxQJIkAIDT7Ubx4cMITJ6MlNRUmask\nosGqur4ahgRD2OX6eD0uNFxgaCYaBPh5EQ1oF8rLkebxIDkhIRSYAUCv1WJ0YiJqiorg9/tlrJCI\nBjNfwNflGMxKhRI+P2cDJBoMGJppwAoEArCVlyM5Pr7T5Rq1GvFeL5qamvq4MiIaKsxGM1ytrrDL\nXa0umE3mPqyIiHoLQzMNWD6fD0ohurzLo5ckeDyePqyKiIaSjLQMeJo9nX6i5ff5EbAHkJaSJkNl\nRBRrDM00YKlUKvglqcvuF04hoFar+7AqIhpK4uLikD8sHw3lDbDb7AAAIQRszTZYK6wYnz0eer1e\n5iqJKBb4ICANWAqFAnGZmWioqEBqYmKH5V6fDy0qFYZ3soyIKFZGZI5AnCkOJZUlaKhtgCRJSDWn\nImtsFuLDdB8jooGHoZkGtLQRI3CupgaqlhZYLvrj5PJ4UNzUhJSCgi67bxAR9ZQQAkIIKBQKmM1m\nTDZPhhCi3UPJRDR4MDTTgKbT6ZB7xRUoP30aVXV1MEoSvABcOh1SOdwcEfWC5uZmlFaVor65HgIC\niaZEjBw+EomJiQzMRIMYQzMNeHq9HnmTJsHpdIZmBIyLi+MfLyKKuarqKhwvPw6DxQBLrgUA4LA7\ncPDsQYxNH4usEVkyV0hEvYWhmQYNvV7PB26IqNe0traiqLwISZlJUKq+6vZlNBmhN+hxuuw0Es2J\niIuLk7FKIuotDM1ERETdUFtfC4VR0S4wA219m+tr6vHpkU9xYN8BTMibgGmXT8OwYcNkqpSIegND\nMxERUTc02hqhM+ravRYIBLBz604Ufl6IZm0zAlIAu2t3I+n9JHxz+jfx3Tu+C4WCo7sSDQYMzURE\nRN2gVqnh8Dvavfb+v97H1sNbgTxAqASUUAIaoM5Zh78U/gUmnQm33nyrTBUTUSzx7S8REVE3pCel\nw9niDH3v9Xjx9p634cn0wK/0w+Vxwefzwelzwqv0wpHuwLq318Hr9cpYNRHFCu80ExERdYPFYkFC\nZQJaGlsQnxiP86fOo8ZbA4VGAVudDa1NrZBE26g9Wr0WcQlxKHGU4Pjx45gyZYrM1RNRtHinmYiI\nqBsUCgUmjZ0Eo9uI+rJ6lJ4vRau3FdYyK1oaW+Cz+ODN9MIzzAObyoaaiho025pRXl4ud+lEFAO8\n00z0Jc7kRUSRaLVaXFFwBVpaWuCsdsJb44XL7AJygIAnALR8uaIa8Cf74TnpgdvtlrNkIooRhmYa\n0pxOJyqqK1BZXwmf34c4fRyy07ORmprKJ96JKKz4+HhcffXV8D7tRUARABoAKAHoAUgAPADqAKiB\nkydPylkqEcUIUwENWTabDfuP70eluxJxI+KQPCoZIlHgWNUxnDh9AoFAQO4Siagfi4uLa3tzXQvA\nC8AAQABwA3B8+e944P1P3pexSiKKFd5ppiFJCIHjZ45Dm6yF3vjVLII6vQ66TB0uVF6A5YIFw4cN\nl7FKIurPNBpNWzA2AXACKAagRdsdZ8VX/z5ddlq+IokoZninmYak5uZmOOBoF5gvlpCcgNLq0j6u\niogGGo1bA7jQ1i0jH0AugBwAmQDSAegAl98FIYR8RRJRTDA005DkdDohacI/9KfRauDyuzi+KhF1\nKTkuGbCirWuGD213nFu+/GoEoAZgAj788EP5iiSimGBopiFJoVBABMLf+RFCQAQEHwYkoi7lZ+W3\n9WeuQ1vf5iYANrQF6bovV9IzNBMNBkwENCQlJCQAToT9yNTeYkeaOQ1KpbKPKyOigWT+/PltI2UA\nbWE5OGGgGUAW2vo3q4GPP/5YjvKIKIYYmmlI0ul0GGEZgYbqhg7LPB4P3FY3soZlyVAZEQ0kt912\nG5ROJXABbQ8EJgMQgLYC0B8HJDsAHbDv9D55CyWiqEUdmgsLCzFu3DiMGTMGL730UqfrHDx4ENOm\nTcO4ceMwd+7caA9JFBNjRo1BpiET9SX1sNZa0WRtQkNVA1rKWpBmTMOJsydQeLAQR08chdVqlbtc\nIuqH4uLikKnNBPwAWgHTYWBMETC2BsjzA+ObgNQmIKAKYNeuXXKXS0RRkESUj/ROmTIFL774IrKz\ns7FgwQLs27cPycnJoeVCCBQUFOD555/H9ddfj/r6+nbLAUCSJIYSGel0OrhcLrnLkE1raysaGxvh\n9XuhgAIlNSXw6X0wmU1QKpVwOV1wWB3ITshG3ui8mM8aONTbX05se3kNlva/87t3YlfpLhiNQK4W\nUCej7cHAAAAHEHADtaeA7GEzsGPHDpmr/cpgaf+BiG0vL4vF0qMRbaK609zc3AwAmD17NrKzszF/\n/nzs37+/3TqffvopCgoKcP311wNAh8BMJDeDwYDhw4cjJysHF6wXoEhUwJJqgUajgVKphNFkRMqI\nFJTaSlFTUyN3uUTUz1w24TLAB6R5ALUJbf2YnV9+aQGFBUhOBj4rOiBvoUQUlahC88GDBzF27NjQ\n9+PHj8cnn3zSbp133nkHkiRh1qxZWLx4Md55551oDknUa5qbm9Hib4Ep3tRhmSRJiE+KR0l1SZ/X\nRUT920MPPQSlFTBpAaShbcITP9omN1EBcAJKDaBV+lFbWytnqUQUhV6fEdDlcuHo0aPYvXs3Wltb\nccMNN+D48ePQ69tPKvHss8+G/j179mzMnj27t0ujL6lUKuh0OrnLkJ3P58OEMRPCTngCAE6TExqN\nJqZD0bH95cO2l9dgaX+dToen/vspJCb6oUhA2+0oDYAAIHxoC9A+oLkeOHnyJLKy+sdDxoOl/Qci\ntn3fKiwsRGFhYdT7iSo0T5s2DT/96U9D3584cQILFy5st86MGTPgdruRnp4OAJg6dSoKCwuxYMGC\nduutWLGi3ffs69N32LeqTX19PU7UnUByWvguRA3nG5BqTo3pUHRsf/mw7eU1mNr/4w8P4Iui7YjP\nApAM+ByA1gHE+QGlBLQ4gWNNgNIRh9IT/WO20cHU/gMN275vTZ8+HdOnTw99/8wzz/RoP1HdLktI\nSADQluBLSkrw7rvv4sorr2y3zlVXXYW9e/eitbUVVqsVR44cwTXXXBPNYYl6RXx8/FdjrF7E7XKj\nuqIaRw4fQWN9I6xWK/x+f98XSET91pNPPomaJsDvA3yNQLoNyFUCGUpguBtItQE5GsAPG44cOSJ3\nuUTUA1F3z3jhhRewfPlyeL1ePPTQQ0hOTsbatWsBAMuXL0dSUhKWLVuGqVOnIiUlBU899RRMpo59\nRonkZjAYkJ6QjtraWlhSLQCAhroGnKs8B6EV8AQ8GJ41HJ9VfAZThQmTxk7q0M2IiIam3Nxc+BUG\nlNa1Il8DWIyAuQnQeQBbANApgTwFoBHAc8//f9iw/jW5SyaiSxT1kHMxKYJDzsmKHxN9xefz4eTp\nk6htrYVX4cXpstPQWDRQ+VQYlTEKlqS2MG1vtkPtUGP6pOlRD0HH9pcP215eg639H3vsMby8+88Y\nbwBGOYF4DeDTAlAACi0AA+A6Axx26XH4i0q5yx107T+QsO3lJcuQc0SDjUqlQsH4AkzPmw40AZZ4\nC0ZZRmFy/uRQYAYAU4IJtoANTU1NMlZLRP3Jz3/+c6hdgF4F6I1AIAFQ6AFFPIA4ADZAawAMfie2\nbt0qd7lEdIkYmok6ER8fD61BiwnjJyA1NRVqtbrDOmqjGo3NjTJUR0T9UXx8PEYn50NTAyjjAQTD\nsgqADYAH8BsAjQH43R969iASEcmHoZmoC7Ge/Y+IBrcnf/E0Gp2AsAKoAlALoOHLhRag1QO4c4Bi\n53nOW0A0wDA0E4WRak6FvcUedrnX4YU53tyHFRFRf3f99ddDmZaNhhYgoAGQBMAMCDfQWgFUKwCP\nG/CaAvjj//9HucslokvA0EwUxoiMEXA1uuD3dRxezm6zwwgjEhMTZaiMiPqzR376S5z2Syh2A/UX\ngIYKoNwDlKYCgZESGhIVUA1T4VjNMRQVFcldLhF1E0MzURgJCQkYnzkeTRVNaGpogsftgbPViYbq\nBqARKMgvYPcNIurglltugSchDVUJQJUFuJANOMZI8GRKKNVKcOdroc5TQxop4dW/vdqjp/iJqO/1\n+jTaRAPZ8GHDkRCfgOraajRaG6FVaJGTmgO9Xo8LtRfQ0toCtUqNYSnDkJiYyBBNRFAoFPjhkvvx\n2+2/RZ3aD70BEGoFWvUSVIlqKPUKiEaB+Ix4lLSWoLi4GLm5uXKXTUQRcJxm4niRl6isvAxHzx1F\ng6cBDo8Dfr8fOr8O4zLGYcbUGZ2OtNEVtr982PbyGszt73K5MOObM1BlroJmogZKkxIBEYDP7UOg\nNQCNSwOzwYxEZyK+NfJbePD+B/v8Tfdgbv/+jm0vL47TTNQH6uvr8VHRR6j0VQIWIGVUCjLyM6DN\n0WJ/9X7s/Wiv3CUSUT+g0+nwy/t/CUOzAZJNQqAlAK/VC8kmwQADjCYj9AY9XD4XPjz1IT74+AO5\nSyaiCBiaiS5B0fki1PvqYc4ww2gyhu4MGQwGZI7NxJHSI6itrZW5SiLqD2677TbML5iPDGUGDHYD\nDH4DEgwJEA4BR50D1cXVqKqowueVn+PJF5/E2bNn5S6ZiLrA0EzUTR6PB+V15dAl6qBUKjssVyqU\nUCWpcO78ORmqI6L+6D/v+k/ka/MxLHEYRowYAWEXCPgDUCWpoFIDKXoVEpMFqqVi/PDRH8Jms8ld\nMhGFwdBMdAnsTjs0ek3Y5Vq9Fs3O5j6siIj6s4KCAtx6+a1QVCgQuBCAvdoOqAHzOTfG24B8iwZ5\naWpMzFDD7yrGs79fJXfJRBQGQzNRN2k0GphUJric4R/e8Lf6EWeI68OqiKg/kyQJ37jxG5idPxve\nc16oJBVS6xQYZdLDkhEHfbIOSo0SWr0Ko/Li8fn+t1FaWip32UTUCYZmokswJX8KGssbO33q1tZo\ng9arRW4Wh44ioq+o1WosvHohNAoNjGYDMuO0iMs0Qh2nhoCA2+WG1+WF0AuoRSv+vWsH/P6OkyoR\nkbwYmokuQX5+PkYbR6Pqiyo4WhzwerxwtbrQdKEJAWsA+en5SElJkbtMIupnJhVMQqY+E/7aVuiM\nEiSFBL8vAKfDCW+rF0aTEQqhQHycAWfKPsfRE0cZnIn6GYZmokugUCiw6LpFmJI6BaJKoKW4Be4q\nNyx+CyakT8DUgqmdPiRIREObVqvFIz94BKp6DbwtPnjtXrianVD6lIgzxkOt1cBd60HW8CyYkxPR\nGGhEZVWl3GUT0UU4IyDRJdLpdJh7zVxMaZ6C5pZmBEQAkpDQ0NKAf3/yb3i9XoxIG4G8kXkwm81y\nl0tE/cS0adMw//Jv4MSJt5CUqIfGqIFap4bP5UNrhQMmpwmmdDMaAgFU1FWgrqwOieZExMXxOQmi\n/oAzAhJnJopSZVUl3jv0Hs7UnkGdo67tI1UXkGPJwR3X3YExo8d0uT3bXz5se3kNxfb3er348X/d\nh6byw/DFu6HSKKH2q2FWmJGamoEqLTD2+tmIt8Sj+nQ1xqaMxbRx05CRnhHzWoZi+/cXbHt59XRG\nQIZm4g9vFBwOB/72r79h3/l9cGvcUBqV8Pl9CHgDcDe6kexOxtMPPt1lP2e2v3zY9vIaqu3f1NSE\n1/7yfygtOoCURANMcUbU2VpgjVMha+pkmLQ6+Krr4a1pQc6wXNi8CsyZuwhZWVkxrWOotn9/wLaX\nF6fRJpJBeWU5Pi76GE6dEx61Bw6FA944L3xmH6QUCWccZ7DlH1vkLpOI+hGz2Yx7H3gIExfeAtOU\nabClDIcrLwcFC+ZC6/bDXFaLLAm4LDkNIwwGWJwtOLTtLVRXVcldOtGQxtBMFIUvzn6Bek89PAoP\nkAR41B5U1VehvL4cdb46KDOVePvA2/B6vXKXSkT9iMFgwMypMzFm7HjkX16AvEl58Lu9SGqyIzFO\nh5Y6O1y1LfCcLUZGiw3mihIc3rIFFWVlcpdONGTxQUCiKNiabWj1tcJgMKDqQhUaWhrgqnPB2+yF\npJSgSdTA5DDh7NmzGDdunNzlElE/MjJ7JAKBAD48+iGajc1wl9fC4gcaL9hgtgPjLUZo1SoEAgGY\n/RoYtVpU7N8PtVqNtIzY93Emoq4xNBNFIT05HY4WB+zNdlSUVKDlsxYYPIBBDQg/YPM40OhvxM53\ndjI0E1E7kiRhdO5o6LV6fHDiA7jgweiMJNRV1iLH7IdW3fYn2ulohTqgQV1tJRqdTSjeacWMBd9A\neno6h7gk6kPsnkEUhSuuuAJoACpOV8CxvwUjtcDoUcDwMcCw0UBeJpChAl7864sIBAJyl0tE/VBG\nRgayk7Oh0RsgKdVQtrpg1GoBAB6PBxfKL8AOO3z6AHTJeridF/DmB2/infffgdPplLl6oqGDoZko\nChaLBVOypqDpQBMy9YApBdDZgLRKILMWsDiB1GRAG7Bhw4YNcpdLRP2QQqHApLGTYIxLR2lxJQJu\nNzweDxw2O2pKapCQnACzJQHFjVacqjqPquKzaK04gyOfbMfaPz2Lc+fOyX0KREMCQzNRlOZeORfa\nVsBoAtLrgJE+IFkAiV4g0weM9gAZOuDlv7wsd6lE1E8ZDAbccP1NMGeOg8uphNqtRoo2FfHxcUhM\nsuBEaQnK/a1I9bgx2qhHwfBUXDk+B2mSDQe3bsHZ06flPgWiQY99momiNH78eOgCQIITSAJgaAFM\nHkCtAAIBwKEAcnzAh9W8G0RE4RkMBkydPx8f+f2oLy6G5PfD6nWhukWgWCOQqdDDolHjgloFjV7T\ntk28DskGE859/CEys7Kg0+lkPguiwYt3momilJeXB78PsLQAZiuQ5gNMekBrAPRGIFkJDHcCSocb\nPp/v/7V358Fx3OeZx5+eC3NiMIMBiIsACV4ASImkSAo6acqMKEUMKdviri3b2cRS1VJKrCO73rhc\n5W9zMOwAACAASURBVESpuFLlJEpZWcaW6Gxc1lqUd6skb8lZ23KRyUpwIok3JZ7iCRLEQeIcDDAz\nmKv3D8ZYY0FoSFwNAt9PlUrAdDfm7Rcz6Ic9v/611eUCmMG8Xq/Wb9mi9B13qKu4WKmqCnlrKmV3\nGPLlcrqSM+Wr/I2bJZlSYTAgY7BXXVeuWFc4MAcQmoFJ4LEXydktFdkkIyDJJ8kjySvJLxl2KWCT\nTp48aW2hAGY8l8ul2++7T4WNjeowXfq4L6pL0ZhixUH5FlfK5b52ljmbycphOuT2uOV2OJSMxSyu\nHJjdCM3AJNj4wMOKxqWcJLn+7cGMpLSUjEm9RZInIL366qvWFQngluFyubRg8WLd98hnVFBbK/fC\nSvnKwnK6nJKkXM7UYM+gSotLlRpKyeV0y8XQDGBKMaYZmASf+tSn9NLb/0OtkorbpIhxLTvHMlKi\nQMoEpFSR9O6v3rW6VAC3kPnz52tdZp3OfnxGly5fUdW8YuUyOeUSOZUFyxQKh9R7pVfOwhIVlZaO\n2DaZTKq1vVWtXa3KZDMq9BaqprxGkUhEhmFYtEfArYszzcAkWLVqlbrsUleBZAalaFC6GpRS5ZIz\nIqXtkj0nXbh8wepSAdxiFi1cpK989gmlNU+DV1KKuCJaumCp/IUB9bT3yMh4VLh0qQoLC4e3icVi\n2nt0ry7FL8lX6VO4Nqx0YVqHWw7rxOkTMk3Twj0Cbk2EZmASLFu2TP05aSgntRVInYbUZ5NaMlKL\nJIdHcqSknLjBCYCbV1lZqS995WkVL21UW09aF89eUU97QjlvmYrvvEu1DQ3D65qmqWNnjslZ7FSo\nJCS749pdAz1ej0qrStU22KaOjg6rdgW4ZTE8A5gkRkrqH5TCfinhlpSRbIbkMKSOqGRK8vKOAzBO\noVBIG39niwYGBhSPx2UYhgKBwKhp5qLRqAY1qIg/ct2fUxgp1MWOi1q4cOF0lA3MGhzCgUniyErp\ntHT2quS2SR6nlJY0kJOUk5xOyZ61ukoAtzq/3y+/3z/m8sHBQdkKxv4gucBdoJ50j3I5PvkCbgah\nGZgkQ0NS2pQifqnYIf3bJ6IalHQ1KaWi14ZvAMBUstvtMnNjj1k2TVMyxcWAwE0iNAOTJOuVvG6p\nqkiyOSUZknJSQU7yuKQjg1LKaXWVAGa7YDAo8+LYoXmgf0ClwVJCM3CTuBAQmCQel5QtlqJ9Uu6y\npDYpNyiZdikryQzoWpAGgCnk8XhUFapSd0f3qGWpVEpDPUOqrqi2oDLg1saZZmASNDc3y5OVijql\nYFYqyklG9lqAvlogdS2T/BlduxoQAKbYkkVLlD2bVXtzu+x+u2x2mzLJjOwpu1YvXj1iejoAN4bQ\nDEyCb37zm6oZktabUnFQcjilXE4aTEvnU9JQi9RrSH6b1+pSAcwBdrtdy5ctV81AjXp6e5TKpBQo\nCqi4uFgOB4d+YDx45wCT4J09P9fn3dfuBGi3ScpKNpsUcEpLJUX7pYtD0p1r7rK6VABzSL6ZNgDc\nOMY0AxN04cIFVbikcFiKZ3Rtuox/m2ZOpuQxpZKENBiT/uzP/szSWgEAwPhwphmYoJdeekkep+Tw\nS1FJ2QHJH5VsdknZa9PMZXJS0iatWLFi1Pamaaqnp0cDgwOyGTYVFRVxZggAgBmG0AxMwNDQkP7l\nxL8o55KSGcnnlgZDUjwr2dLX1knbpb64VFpWM2r7WCymzt5OHWk+IofHIeWkbHtWpb5SNSxtYOwh\nAAAzBMMzgAk4f/68zAJTnRGpOSZlHZLhkGSTcgXX/stmpGMZ6a/+6sUR2yaTSR08dVCGx1CkMqJQ\ncUihkpAiNRF1Zbt07ONj1uwUAAAYhdNYwDiZpqm9h/cqEAmo3VmgQ6kh2TqlKr/k80imKcVi0tFu\nqTMQ1saNG0dsf7n1ss53nJfb69Ybe95QUWGRbl9xuyoqKxSeF1bXpS719/czNRQAADMAoRkYp46O\nDnVlu7R03VJ1/FOHOpfE9M6VpOb3SMGolM5JLXapo0D6x//22ohtk8mkvvej76nF1qLyxeXqLenV\nldgVHX/7uFbWrNSnP/1pOfwOdfV0EZoBAJgBCM3AOJimqRPnTsjpdiraElVtXa1OHz+tRFg6XSYp\nayrTn1VBskBPNH5Rd901cqq5N956Qxd0QTX31Mhb5FWwLCiVSZmajI4cOaKig0VqqG9QNpu1ZgcB\nAMAIhGZgHLq7u/XRhY8UXBpUWaJMfrdfJUtLdO7wOXW3dMvlcikQDmjl/JX64//0xyO27e3t1Xtn\n31PNihpl0yNDscPlUNHiIh06cUg1lTUKVAWmc7cAAMAYCM3AOJy7dE72Irv8Qb/WrFijg8cPqs/s\nU929dUoNpJTtzCriiuiJB55QcXHxiG0vXLggs8hUOBxWa0/rqJ/tDXvVMtSiwSuDiqyKTNcuAQCA\nT0BoBm5SPB5XLBNTuCisoaEhebwe3bPmHnV3d+tK9xVli7Jy2B1aXbVadXV1o7bP5XKSTfL4PQol\nQkon08qkMnK4rr0dhxJDSsVTWjp/KVPOAQAwQ3BEBm5SOp2W4TRUUVih0x2n5Sx1ymazqaSkRCUl\nJZKkyycvq7yoXG63e9T25eXlcgw6lElnVFxSrIA7IFvcpnh/XIYMueRSjb/muoEbAABYg9AM3CSH\nwyFlpHA4rOpUtS53XJbdZ5fT5VQ2m1VqMCV/1q9li5Zdd/vKykrV+Gp0/MhxlSwsUW5+TuXl5TIM\nQ6ZMnT9wXo+seUQul2ua9wwAAIyF0AzcJJ/Pp8KCQiUGE6ooq1AoGFJ3T7fiQ3E5HU75wj4Fg0EV\nFRWN2jadTuvoqaOqXVarU02ndKb/jHpre3X63Gn57D6lrqS0smilHtn0iAV7BgAAxjLhOwI2NTWp\nvr5eS5Ys0Y4dO8Zcb//+/XI4HPrJT34y0acELLe0ZqninXEl4gl5PB5VVVZpae1SlUXKZE/YVbfw\n+kMrjn18TBd6LmhAA7pt1W2qLaiV2WkqdSKl7Mmsvrz2y/qPX/6Pcjqd07xHAADgk0z4TPNzzz2n\nnTt3qqamRg899JAef/xxRSIjr/jPZrP6+te/rocfflimaU70KQHLBYNBrV22VqcunFJ3d/e1d1JG\n8tl8WrN0jYLB4Kht+vv79eGZD5UsTMof8au8olzldeVaPG+x7o7frVJPqUrLSrn4DwCAGWhCR+do\nNCpJWr9+vSRp06ZN2rt3rzZv3jxivR07dmjbtm3av3//RJ4OmFGCwaAaVzUqFospk8nI4XAoEBh7\nXuWLly6qy+zS/Ir5Mgxj+HGH06FwVVjdl7t17vI5LV28dDrKBwAAN2FCwzP2798/4gr/hoYGffDB\nByPWaW1t1VtvvaWnn35akkaEBWA2CAQCCoVCnxiYJan1Sqs8RZ7rvgdsdpvsAbv6on1TVSYAAJiA\nKf8c+Pnnn9e3v/3tazMDmOaYwzNefPHF4a/Xr18/fPYaU8/hcFx3ajRMrhXLV6jSrJQ34B3xeEVh\nhVQlJcNJuavc/C6mEa99a9F/a9F/69D76dXU1KSmpqYJ/xzDnMAg42g0qg0bNujw4cOSpGeeeUYP\nP/zwiOEZtbW1w0G5q6tLXq9Xf//3f6+tW7f+vyIMQz09PeMtAxPkdruVTCatLmPW2//hfh1sPyhv\nmXfEH8s1VWt0oOWAWs+26t6Ke9W4ptHCKucWXvvWov/Wov/WoffWCofD47rGbkJnmn99sVNTU5Oq\nq6u1e/duvfDCCyPWOX/+/PDXX/nKV7Rly5YRgRmYK6pKq9Q+2K7O3k6l3Cl5A17ZbDal02n1dvQq\nYouMObczAACw1oSHZ7z00kvavn270um0nn32WUUiEe3cuVOStH379gkXCMwWJSUlKu0olcfvUdpM\n60rXFeVyOTlLnarwVKi6tPq6s24AAADrTWh4xqQVwfAMS/Ex0fQZGhrSiTMn1BXvkuExZMhQfUW9\nert7tax2GdPNTTNe+9ai/9ai/9ah99ayZHgGgJsTj8cVj8fVcblDqWRKVfOqNK9hniqKK6wuDQAA\nfAJCMzBNTp85rd2Hdyvry8pT5lHOzOlUzynNvzRfAWdA86vmW10iAAAYw4Rvow0gv97eXr29/225\nq90qW1SmYDioUHFI5UvKZfpM/eJff6F4PG51mQAAYAyEZmAaHD91XLminAJFo2+A4va6NVAwoLPn\nz1pQGQAAuBEMzwCmwbm2cwpWBxXri+lK6xUNDg7K7XarvLJcZqUpT9ijC60XdPuK260uFQAAXAeh\nGZgG2WxWF05e0OWeyzIKDTm8DmUSGZ0/cF4rSlYol82N60peAAAwPQjNwDQwkoaOnT+m6rurZXfa\nhx/PlefUO9Srjw98rHs33WthhQAA4JMwphmYYrlcTr3pXvlL/cpkMiOW2Rw2OXwOXW27qur51RZV\nCAAA8iE0A1Osu7tbpsfUqqWrNHR1SLHOmJIDSSUHkurr6JNS0qKGRYrFYlaXCgAAxsDwDGCKZbNZ\nyS6Vl5Url8vpbMtZxbpiKnAWqGpelarmVSkUDl1bDwAAzEiEZmCKBYNBZQeyOnnupAyPoeol1cqa\nWaWH0jLShmRKRtxQOBy2ulQAADAGQjMwxRwOhwpUoNZoqyrLKmUYhiTJ4/Eok86oo6NDNUU1Kioq\nsrhSAAAwFkIzMMW6urq05LYlSn6c1NUzVxUoC8hZ4FR6KK2BqwNy+p2qX1RvdZkAAOATcCEgMMU6\n+zpVFCnSAw88oLXz18rR5lDybFK2yzatKl2lJYuXaDA9aHWZAADgE3CmGZgmLpdLdfV1WrJ0ibKZ\nrOx2u+wOuxxO3oYAAMx0nGkGplgkGFFiIDH8vd1ul6vAJbvj2k1O0kNplYZKrSoPAADcAEIzMMVK\nSkrkGHIomUiOWpZKpWSmTM0rmWdBZQAA4EbxuTAwxZxOp1YvW61DHx/SoHtQ3oBXhmEo3h+XElLZ\nurLhGTUAAMDMRGgGpkFhYaHuWXmPOjs7daXniiSpoqhCpUtK5fF4lEyOPgsNAABmDkIzME1cLpcq\nKytVWVlpdSkAAOAmMaYZAAAAyIPQDAAAAORBaAYAAADyIDQDAAAAeRCaAQAAgDwIzQAAAEAehGYA\nAAAgD0IzAAAAkAehGQAAAMiD0AwAAADkQWgGAAAA8iA0AwAAAHkQmgEAAIA8CM0AAABAHoRmAAAA\nIA9CMwAAAJAHoRkAAADIw2F1AcBslUgkFI1Glc1m5fP5FAwGZRiG1WUBAIBxIDQDkyybzerMuTNq\n7WuVPJJhM5S7kpNPPq1YskKBQMDqEgEAwE0iNAOT7ONzH6s90a7iBcUjHk8MJnTw1EE1rmiUx+Ox\nqDoAADAejGkGJtHg4KDa+tpUXF48apnH55HpM9XW0WZBZQAAYCIIzcAk6u3tld1nH3N5YahQLZ0t\n01gRAACYDIRmYBKlMinZHGO/rex2u7LZrEzTnMaqAADARBGagUkU8AWUSWTGXJ6IJxTwBphFAwCA\nWwyhGZhEoVBIjrRDqVTqussHega0oHzB9BYFAAAmjNAMTCKHw6HbFt2mWFtMsWhseBhGaiilzsud\nKveVq6SkxOIqAQDAzWLKOWCShcNhratbp0ttl3S1+apkSB6HRyvKV6isrIyhGQAA3IIIzcAUKCws\n1IrCFcMX/TkcvNUAALiVcSQHppDdPvb0cwAA4NbBmGYAAAAgD0IzAAAAkAehGQAAAMiD0AwAAADk\nQWgGAAAA8iA0AwAAAHlMODQ3NTWpvr5eS5Ys0Y4dO0Yt37Vrl1auXKmVK1fqi1/8ok6fPj3RpwQA\nAACm1YRD83PPPaedO3dqz549+u53v6uurq4Ry2tra9XU1KQPP/xQDz30kL71rW9N9CkBAAAmLB6P\nq6OjQ+3t7erv77e6HMxwE7q5STQalSStX79ekrRp0ybt3btXmzdvHl7n7rvvHv568+bN+pM/+ZOJ\nPCUAAMCEZDIZXTx9Wun2doUk2SV1mqYuBwJacNtt8nq9VpeIGWhCoXn//v2qq6sb/r6hoUEffPDB\niND8m77//e9ry5YtE3lKAACAm5LL5dTZ2am+WJ+cDqf6WttVnkioKhIZXqdMUnRgQBcOHdKSO++U\ny+WyrmDMSNN2G+09e/botdde03vvvXfd5S+++OLw1+vXrx8+e42p53A45Ha7rS5jzqL/1qH31qL/\n1poL/b948aJOnj6pq/1XZTgNhYvDCvqD8nvtCpTVyF4UlsNuH16/VJInkVBOmtLezIXezyRNTU1q\namqa8M8xTNM0x7txNBrVhg0bdPjwYUnSM888o4cffnjUmeaPPvpIn/vc5/T2229r8eLFo4swDPX0\n9Iy3DEyQ2+1WMpm0uow5i/5bh95ba7b0f2hoSFfb2hRtaVEuk5HT71fxggWKRCKy2WbuJFWzpf//\nv2w2q3feeUd/8w9/o9MDp5UNZOUqdMlj98hpdyqcDegz85ZqScVCVQYq1bC4YcTvaSiV0seZjJbf\nc8+U1Thbe3+rCIfDGk/8ndCZ5mAwKOlagq+urtbu3bv1wgsvjFjn0qVLeuyxx7Rr167rBmYAAG5V\ng4ODaj50SPMyGVUVFsphtyueTKrjww91rqxMi5Yvn9HBeTZJp9N6/fXX9er/flVn+88qVZSSs9op\nR6FDtoBNckiZnoz6enp09vIZlZaE5R50KxaLDecZSXI6HDIJtLiOCQ/PeOmll7R9+3al02k9++yz\nikQi2rlzpyRp+/bt+vM//3P19PToqaeekiQ5nU7t27dvok8LAIDlLh0/rhrDUDAUGn7M63ar1u1W\nc0eHOsJhVVRWWljh3PCzn/1M33r5W7pkXFLWm1WmKiOjyJDpMGUOmbK5bTLshjwRj1KDGV3t6lUs\nHpPP7ld3tHtEaB5IJOQKBCzcG8xUExqeMWlFMDzDUnxMZC36bx16b61bvf/9/f3q3LdPS3/jYrLf\nNJRK6VQqpeX33ivDMKa5uvxu9f5L134HL/7XF7XrX3YpWZWUMd9QJplR2puWMWTIHDDlLHaqoL9A\nzpBT/qBfRouh4taMHqldqUXzarWycqUW1Swa/plnrl5VcM0aFRcXT1nds6H3tzJLhmcAADBXxeNx\nBT4hDBe4XHIMDCidTjMTwxRoamrS37z6NzrYclCZQEamTDmHnJJDMuyGjLAhM2Mqm8wq7UjLnrYr\nl8rJcBjqDTjVOjiksoEhBTzXzionhobUFo1K1dUKh8MW7x1mIkIzAADjYLPZlM2zTsY0Z+RZ5lvd\nD1/7oX70/o/U5euSfaVdptNUSimloqlrky67JdM0ZRQZyrXnZIZM5dI5ZTIZOYYccjkK5KpfrOhQ\nRJdyOXX09MjwelV8++0qnTeP3xmui9AMAMA4BINBnZNUOUYwjg4MyFVcLKfTOf3FzVKpVEpv/fwt\n/c+D/1OZJRllO7PK5XIy06YcYYdywZxyp3MyUoZy9pxsTptMmcoN5mQapmxJmzI9GYWDYc1zztNn\nHvm8SktLlcvl+D0hLy7pBQBgHAoKCuStrlbLda7JSaXTupxIaN7ChRZUNjvlcjkdOXFE7xx7R94l\nXhUUFqjAXyC7xy65JSWvXSOlYsm4asg2ZFMunpPSkhkzle3OKrYvplBfSP/uzn+nL/32l1ReXi67\n3U5gxg3hTDMAAONUvWiRmrNZnWhtVbHNJqfNpsFMRj02m+atXDliVgaMXzqd1tHjR9V0tEnnO89L\nXimZSMrn86m3vVeOIofSfelrqcYjGQOGHAmH0v1pma2mCmIFqi2q1eObH9e2bdsUGePiTeCTEJoB\nABgnm82m2ro6Dc6fr76eHiXSabm8Xi1jWMakSafTOnLiiA5fPiz/Qr98zT6ZpaYS/QnFY3H5XX71\nD/TL4XEo25+VMpKZMJUdysp1zqX1i9frv7zwX3THHXdYvSu4xRGaAQCYIJ/PJ5/PZ3UZs9K+g/t0\n6Mi76r16WVl3VoWDhi639KuwplBZe1Y20yZ71q5oX1RmylS2LStnl1O1gVq98CcvaOPGjVbvAmYJ\nQjMAAJiR9u/9QO//r12av7BQJSU+9aZ75fc71X+kS4OOiEKVIXXHuhUqDMnj9Sh6IqpQOqT//Ox/\n1mc/+1mry8csQ2gGAAAzzuXLl3Xyg39SbXWxisoKlUqlFeuIqby6TI1GTu8fPKdYvEieAo+cvU6Z\nHaYemveQ/vhbf6yysjKry8csRGgGAAAzzrGjhzXPX6Bof79SQym5ClwqCZaos69TJeUluttw6oov\nrJ5YTMVGsR767EPa+MBG5ljGlCE0AwCAGaWvr0+HD7+vxYVSfyKmzoud8vv8ioQiKo9UqC/aJ3ta\ncg9Jdy2+S1s3bOXsMqYcoXmOyuVy6u3tVfTqVYVKSnTw6GG5fAXyuX2aXzZfxcXFstvtVpcJAJhj\nYrGYDpw8oHQgJ0+xX/5ir1rbWpVxZNTW1aaKSIUqystlMx2yK6RH7n+EwIxpQWiegxKJhC589JE8\n0aj6r7TJu3aV1HZKnS6XOkpD+qjlIwWNoO5be58ikYhsNu6BAwCYHmcunpG71K15tQvVeblZNfPC\nKi8rV+eVTqVyKbU0t6hsXrk6Lw9o7e88qqrKKqtLxhxBGppjcrmcLnz4oarSabkzKWULUiosCmhe\nUUBGV6suHTugdCitFnuLfv7Bz7X/o/1KJpNWlw0AmAMSiYR6473yB/xaXLtY7aahvv5BeXwezV84\nX9Xl1SosKJQGHKqoX6u7Gu+yumTMIYTmOaa3t1e+WEyFHo86ejsUCAeUy2bV3N4sX8StBQGvcvGU\nyqrLlC5Ia9A5qA9PfahcLmd16QCAWS6dTg9/Bl5cXKzlaxr18VBWJ1o71dnTr/54UhcH4urzRvTg\nls8xjBDTiuEZc0ysq0tht1vJoSHl7DnZbHYlh4Ykl+R0OhUwbOroisqoKtWQhpROp9Uz1KO+vj6F\nw2GrywcAzGIul0vK/L/va2pqFCmO6GLLRXX19shus6uypE5bN2xVUVGRdYViTiI0zzFmNivbr6fj\nMa/9L5lKyO11S5IMScmBuM6fPq+uq13KpXLKpXIyY6Y23r9RBQUF1hQOAJj13G63in3FGugfkL/Q\nL0ny+X1qqG+QJCUGE7L32wnMsATDM+YYTyik/lRKHrdbTtOpTCYjU6YM27Ug3d0VVVuiTxl/Rv5S\nv0pqSxSsCarL7NKh44eUSqUs3gMAwGy2uGaxMr0ZDfQPjHh8cGBQic6E6hbWWVQZ5jpC8xxTHImo\nx27XUDqtypJKDfTE5HK4lEwMKZPJ6mRHhwJLI0olUyotKpXdblc6mVZlZaWSBUm1tLZYvQsAgFnM\n7/drbf1a+ZI+dTd3q/tyt7ovdss94NbaurUqLCy0ukTMUQzPmGOcTqeqVq7UmUOHNM/hVImnVEoZ\namu+omiBXd0lHhUPmQr7wiouKVYqlZIj7bj2UZghXWq5pIU1C5mGDgAwZfx+v1avWK1EIqF0Oi2H\nwyGv12t1WZjjCM1zUFFRkQruvltdHR0aaG9XIFSqyJL71HX1gkLBuBZWLFRBQYFifTEpKdXV1Mnu\nuHaFsmmYSqfTjG0GAEw5j8cjj8djdRmAJELznOXxeDR/4UJp4UK53W59rqJCzc3N+j/H/o80IKUH\n06ooqlBxZbEK3NcCci6Xk3KSw8HLBgAAzC2kHwyrqqrSws6FClQGhs8s/6ZYX0yV4UrmxQQAAHMO\nA1MxzOFwaGnVUnW3diudSo9YNtA/IMWk6qpqi6oDAACwDmeaMUJFeYXsNrtOt5xW1BaVYTdkDpkK\neUKqa6hjbBkAAJiTCM0YZd68eSopKVEsFlM2m1VBQYF8Pp/VZQEAAFiG0IzrstlsCgaDVpcBAAAw\nIzCmGQAAAMiD0AwAAADkQWgGAAAA8iA0AwAAAHkQmgEAAIA8CM0AAABAHoRmAAAAIA9CMwAAAJAH\noRkAAADIg9AMAAAA5EFoBgAAAPIgNAMAAAB5EJoBAACAPAjNAAAAQB6EZgAAACAPh9UFAABwoy5e\nvKimfU06cemE7IZdyxcs1/133q+qqiqrSwMwyxGaAQC3hPfee08/evdHclW5FF4Vlkzp/db39f6P\n39d/+PR/0No1a60uEcAsRmgGAMx4ly9f1q53d6mssUxev3f4cW+hV/1l/frRP/1IC2oWKBKJWFgl\ngNmMMc0AgBmv6YMm2SvsIwLzrxWGCpUtzmrvwb0WVAZgriA0AwBmvI9bPlaoLDTm8kAkoFOXTk1j\nRQDmGkIzAGDGs9vtyuVyYy7P5XKyG/ZprAjAXENoBgDMeLfX3q6+1r4xl/e392v1ktXTWBGAuYbQ\nDGBKdHZ26sSJEzpx4oS6urqsLge3uHvuvEeOLof6rowOzl1tXQr0B7RmzRoLKgMwVzB7BoBJNTg4\nqHf3vK3+1gsKOk0ZMvRhylTR/EVav/Eh+Xw+q0vELai0tFRf2fwV/fef/3dduHxB/jK/zJypgfYB\nBQYDeurfPyW/3291mQBmMcM0TdPyIgxDPT09VpcxZ7ndbiWTSavLmLNmU/8zmYx++saPVTjUpQXz\nK0csu3ipTf3uiLZs+4Icjpnx7/XZ1Ptb0Xj639vbqwOHDujExRNy2By6ffHtWnPHGnm9o2fVwCfj\n9W8dem+tcDis8cTfmXHkAjArnDt3Tka0XQuWLBi1rKa6QsdON+v8+fNaunTp9BeHWSEUCunBjQ/q\nQT1odSkA5hjGNAOYNGdPHVV5ODjm8rLiQp0/dWwaKwIAYHJwphnApMkkk3J7XGMuL3A5lU4kprEi\nzBbxeFxXOq+oN9Yrp8Op8ki5QqGQ7HammQMwPSZ8prmpqUn19fVasmSJduzYcd11vvGNb6i2tlZr\n1qzRqVNMPg/MVoFwRNHYwJjL+2NxFUZKp7EizAZt7W16/9j7ah5s1pB/SFFnVIdbDuvA0QOMCwUw\nbSYcmp977jnt3LlTe/bs0Xe/+91RU0vt27dPv/rVr3TgwAF97Wtf09e+9rWJPiWAGapu+e1qKV9L\nlAAAC95JREFU70sol8uOWpbNZtQRTWpJ/XILKsOtKhqN6ljLMRVVFSkUCcnj9cgf8KukskRDniEd\nP33c6hIBzBETCs3RaFSStH79etXU1GjTpk3au3fviHX27t2rbdu2KRwO6/HHH9fJkycn8pQAZrCK\nigpVLF+njz6+pP7+2PDj/f0xHT3doqrb71RFRYWFFeJWc7Htorxhr+yO0cMwCkOF6kn1qL+/34LK\nAMw1EwrN+/fvV11d3fD3DQ0N+uCDD0ass2/fPjU0NAx/X1JSonPnzk3kaQHMYOs3PKCGDb+jczFp\n/8lL2n+yRecHDK349Fbde/+nrC4PtxDTNNXZ1yl/4djzL9u9dvVFx75TIABMlim/ENA0zVFz4RmG\nMWq9F198cfjr9evXa/369VNdGv6Nw+GQ2+22uow5azb2/441a3THmjVKpVKSJJdr7IsDrTQbe38r\nuZH+NyxpkCfkGXN5mbdMIVeI3+M48Pq3Dr2fXk1NTWpqaprwz5nQzU2i0ag2bNigw4cPS5KeeeYZ\nPfzww9q8efPwOjt27FAmk9Ef/dEfSZIWLVo06kwzNzexFpOsW4v+W4feW+tG+n/k+BENegbl81//\nTpJdLV1at3idgsGxpzrE9fH6tw69t9Z4b24yoeEZv/4j1dTUpObmZu3evVuNjY0j1mlsbNSbb76p\n7u5uvf7666qvr5/IUwIA5pCaihoNdg8qmx19celAdECF9kIVFhZaUBmAuWbCwzNeeuklbd++Xel0\nWs8++6wikYh27twpSdq+fbvuvPNO3XfffVq7dq3C4bBee+21CRcNAJgbQqGQ6svrderSKbmCLnl8\nHmUzWcX74/JkPLqt4bbrDvkDgMk2oeEZk1YEwzMsxcdE1qL/1qH31rqZ/sdiMXVc7VDvQK8cNocq\nSioUiUTkcHCPrvHi9W8dem+t8Q7P4K8NAGDGCwQCCgQCVpcBYA6b8M1NAAAAgNmO0AwAAADkQWgG\nAAAA8iA0AwAAAHkQmgEAAIA8CM0AAABAHoRmAAAAIA9CMwAAAJAHoRkAAADIg9AMAAAA5EFoBgAA\nAPIgNAMAAAB5EJoBAACAPAjNAAAAQB6EZgAAACAPQjMAAACQB6EZAAAAyIPQDAAAAORBaAYAAADy\nIDQDAAAAeRCaAQAAgDwIzQAAAEAehGYAAAAgD0IzAAAAkAehGQAAAMiD0AwAAADkQWgGAAAA8iA0\nAwAAAHkQmgEAAIA8CM0AAABAHoRmAAAAIA9CMwAAAJAHoRkAAADIg9AMAAAA5EFoBgAAAPIgNAMA\nAAB5EJoBAACAPAjNAAAAQB6EZgAAACAPQjMAAACQB6EZAAAAyIPQDAAAAORBaAYAAADyIDQDAAAA\neRCaAQAAgDwIzQAAAEAehGYAAAAgD0IzAAAAkAehGQAAAMiD0AwAAADkQWgGAAAA8iA0AwAAAHkQ\nmgEAAIA8CM0AAABAHuMOzbFYTI8++qiqq6v1mc98RgMDA6PWaWlp0QMPPKDly5drw4YNev311ydU\nLKZGU1OT1SXMafTfOvTeWvTfWvTfOvT+1jTu0Pzyyy+rurpaZ86cUVVVlV555ZVR6zidTn3nO9/R\n8ePH9cYbb+ib3/ymYrHYhArG5OPNay36bx16by36by36bx16f2sad2jet2+fnnzySRUUFOiJJ57Q\n3r17R61TVlamVatWSZIikYiWL1+uAwcOjL9aAAAAwALjDs379+9XXV2dJKmurk779u37xPXPnj2r\n48eP68477xzvUwIAAACWMEzTNMda+OCDD6qjo2PU43/xF3+hr371qzp9+rTcbrfi8bjq6+t18eLF\n6/6cWCymDRs26E//9E/16KOPjlq+ePFinTt3bgK7AQAAAOS3aNEinT179qa3c3zSwt27d4+57NVX\nX9XJkye1evVqnTx5UuvWrbvueul0Wo899ph+93d/97qBWdK4CgcAAACmy7iHZzQ2NuoHP/iBEomE\nfvCDH+iuu+4atY5pmnryySe1YsUKPf/88xMqFAAAALDKuEPz008/rUuXLmnZsmVqbW3VU089JUlq\na2vT5s2bJUn/+q//qtdee03//M//rNWrV2v16tV6++23J6dyAAAAYJp84phmAAAAABbdEZAbo1ij\nqalJ9fX1WrJkiXbs2HHddb7xjW+otrZWa9as0alTp6a5wtktX/937dqllStXauXKlfriF7+o06dP\nW1Dl7HQjr33p2qxADodDP/nJT6axutnvRvq/f/9+rVu3TvX19dqwYcP0FjiL5et9IpHQ7/3e72n1\n6tX61Kc+pbfeesuCKmenJ554QvPmzdNtt9025jocc6dOvv6P65hrWuAv//Ivza9+9atmMpk0//AP\n/9D867/+61HrtLe3m4cPHzZN0zQ7OzvNhQsXmv39/dNd6qyyatUq89133zWbm5vNZcuWmZ2dnSOW\n792717z33nvN7u5u8/XXXzc3b95sUaWzU77+v/fee2ZfX59pmqb5wx/+0Pzyl79sRZmzUr7em6Zp\nZjIZ84EHHjA3b95svvHGGxZUOXvl638ulzNXrFhh7t692zRN87q/H4xPvt6//PLL5tNPP22apmk2\nNzebtbW1Zi6Xs6LUWaepqck8dOiQuWLFiusu55g7tfL1fzzHXEvONHNjlOkXjUYlSevXr1dNTY02\nbdo0qu979+7Vtm3bFA6H9fjjj+vkyZNWlDor3Uj/7777bgWDQUnS5s2b9e677057nbPRjfReknbs\n2KFt27appKRkukuc1W6k/wcOHNDtt9+u3/qt35J07W8+Ju5Geh8MBhWLxZROp9XT0yOv1yvDMKwo\nd9a5//77FQqFxlzOMXdq5ev/eI65loRmbowy/X6z55LU0NCgDz74YMQ6+/btU0NDw/D3JSUlzJ89\nSW6k/7/p+9//vrZs2TIdpc16N9L71tZWvfXWW3r66aclidAwiW6k/7/85S9lGIbuv/9+bdmyRb/8\n5S+nu8xZ6UZ6//jjjyubzSoSiei+++7Trl27prvMOYtj7sxxo8fcT5yneSI+6cYo5k1cexiLxfT5\nz39e3/nOd+Tz+SazRPx/TNMc9bshPEy/PXv26LXXXtN7771ndSlzxvPPP69vf/vbMgzjuu8DTK1k\nMqkjR45oz549isfjevDBB3Xs2DF5PB6rS5v1/u7v/k4Oh0Pt7e06evSoNm/erIsXL8pms+Sc2pzC\nMXdmuJlj7pS9K3bv3q2jR4+O+m/r1q1at27d8McQE70xCm7MunXrRlxkcPz48VFzazc2NurEiRPD\n33d2dqq2tnbaapzNbqT/kvTRRx/pqaee0k9/+lMVFRVNZ4mz1o30/uDBg/rCF76ghQsX6s0339Qf\n/MEf6Kc//el0lzor3Uj/7777bv32b/+2ysrKVFtbq7Vr16qpqWm6S511bqT3TU1N+tKXviSv16vG\nxkZVVFRwEfI04ZhrvZs95lryT0lujDL9fj1up6mpSc3Nzdq9e7caGxtHrNPY2Kg333xT3d3dev31\n11VfX29FqbPSjfT/0qVLeuyxx7Rr1y4tXrzYijJnpRvp/fnz53XhwgVduHBB27Zt08svv6ytW7da\nUe6scyP9v+uuu/Tuu+8qHo+rp6dHhw8f1r333mtFubPKjfR+48aN+sd//EflcjmdP39ePT09I4Z0\nYOpwzLXWuI65k3KJ4k3q7+83t27das6fP9989NFHzVgsZpqmaba2tpqPPPKIaZqm+atf/co0DMNc\nuXKluWrVKnPVqlXmL37xCyvKnTXeeecds66uzly0aJH5t3/7t6ZpmuYrr7xivvLKK8PrfP3rXzcX\nLFhg3nHHHeaJEyesKnVWytf/J5980gyHw8Ov93Xr1llZ7qxyI6/9X/v93/99880335zuEme1G+n/\n9773PbO+vt5cv369+eMf/9iqUmedfL3v6+szn332WXP16tXmpk2bzJ/97GdWljurfOELXzDLy8tN\np9NpVlVVmf/wD//AMXca5ev/eI653NwEAAAAyIOR/gAAAEAehGYAAAAgD0IzAAAAkAehGQAAAMiD\n0AwAAADkQWgGAAAA8iA0AwAAAHn8X43/Ru88Mc4AAAAAAElFTkSuQmCC\n", + "text": [ + "" + ] + } + ], + "prompt_number": 66 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file