-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathestimating_a_mean.py
195 lines (147 loc) · 6.39 KB
/
estimating_a_mean.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
This script demonstrates Bayesian estimation of a two-dimensional mean as data
points arrive sequentially. Depending on the chosen prior and data
distributions it can show many different effects, e.g.:
- narrowing of posterior for more data points
- that posterior will include true mean most of the time (calibrated)
- that posterior will not include true mean most of the time (uncalibrated)
- that posterior is influenced by prior, but data overwrites that influence
When run, the script opens a figure window in which increasingly more data
points and the corresponding posterior is shown as one clicks into the plotted
axis.
Created on Wed Nov 23 16:44:02 2016
@author: bitzer
"""
import numpy as np
from scipy.stats import chi2
import matplotlib.pyplot as plt
from matplotlib.patches import Ellipse
from matplotlib import lines
plt.style.use('bmh')
#%% data generated from prior
prior_mu = np.zeros(2)
prior_std = 3
prior_corr = 0
prior_cov = np.array( [[prior_std**2, prior_std**2 * prior_corr],
[prior_std**2 * prior_corr, prior_std**2]] )
#real_mu = np.r_[1.0, -4.0]
real_mu = np.random.multivariate_normal(prior_mu, prior_cov)
real_std = 2
real_corr = 0
real_cov = np.array( [[real_std**2, real_std**2 * real_corr],
[real_std**2 * real_corr, real_std**2]] )
N = 20
data = np.random.multivariate_normal(real_mu, real_cov, size=N)
#%% initialise plot
def eigsorted(cov):
vals, vecs = np.linalg.eigh(cov)
order = vals.argsort()[::-1]
return vals[order], vecs[:,order]
def get_cov_ellipse_params(cov, volume=.9):
"""Parameters for drawing an ellipse enclosing a desired probability mass.
Returns width, height and angle of an ellipse enclosing *volume* based on
the specified covariance matrix (*cov*).
Parameters
----------
cov : The 2x2 covariance matrix to base the ellipse on
volume : The volume inside the ellipse; defaults to 0.5
based on a function by Noah Haskell Silbert:
http://www.nhsilbert.net/source/2014/06/bivariate-normal-ellipse-plotting-in-python/
"""
vals, vecs = eigsorted(cov)
theta = np.degrees(np.arctan2(*vecs[:,0][::-1]))
width, height = 2 * np.sqrt(chi2.ppf(volume,2)) * np.sqrt(vals)
return width, height, theta
figsz = (10, 10)
fig = plt.figure(figsize=figsz)
ax = plt.axes(aspect='equal')
plt.axis([-10, 10, -10, 10])
# common ellipse properties
ellprops = {'facecolor': 'none', 'lw': 2}
# plot prior
width, height, theta = get_cov_ellipse_params(prior_cov)
prior_ell = Ellipse(xy=prior_mu, width=width, height=height, angle=theta,
edgecolor=next(ax._get_lines.prop_cycler)['color'],
**ellprops)
ax.add_artist(prior_ell)
# handles for legend
lh = [lines.Line2D([], [], color=prior_ell.get_ec(), label='prior')]
# plot dots
dots = plt.plot(0, 0, '.', visible=False)[0]
lh.append(lines.Line2D([], [], ls='none', marker='.', color=dots.get_color(),
label='data'))
# sample mean
smean = plt.plot(0, 0, '+', mew=2, visible=False)[0]
lh.append(lines.Line2D([], [], ls='none', marker='+', color=smean.get_color(),
label='sample mean'))
# plot posterior of mean
width, height, theta = get_cov_ellipse_params(prior_cov)
post_ell = Ellipse(xy=prior_mu, width=width, height=height, angle=theta,
edgecolor=next(ax._get_lines.prop_cycler)['color'],
visible=False, **ellprops)
ax.add_artist(post_ell)
lh.append(lines.Line2D([], [], color=post_ell.get_ec(), label='posterior'))
# plot real covariance
width, height, theta = get_cov_ellipse_params(real_cov)
lik_ell = Ellipse(xy=prior_mu, width=width, height=height, angle=theta,
edgecolor=next(ax._get_lines.prop_cycler)['color'],
ls='--', label='real cov', **ellprops)
ax.add_artist(lik_ell)
lh.append(lines.Line2D([], [], ls='--', color=lik_ell.get_ec(), label='real cov'))
plt.legend(handles=lh)
plt.title('ready! click to proceed!')
#%% visualise posterior after seeing increasingly many data points
def compute_posterior(dp, mu0, cov0, cov_lik):
prec0 = np.linalg.inv(cov0)
prec_lik = np.linalg.inv(cov_lik)
cov_pos = np.linalg.inv( prec0 + prec_lik )
return np.dot(cov_pos, np.dot(prec_lik, dp) + np.dot(prec0, mu0)), cov_pos
class clicker:
def __init__(self, data, mu, cov, dots, post_ell, lik_ell, smean):
self.data = data
self.N = data.shape[0]
self.mu = mu
self.cov = cov
self.post_ell = post_ell
self.lik_ell = lik_ell
self.dots = dots
self.smean = smean
self.cid = dots.figure.canvas.mpl_connect('button_press_event', self)
self.n = -1
def __call__(self, event):
if event.inaxes!=self.dots.axes:
return
if self.n < 0:
self.dots.set_visible(True)
self.smean.set_visible(True)
self.post_ell.set_visible(True)
self.n += 1
if self.n == self.N:
self.lik_ell.center = real_mu
self.lik_ell.axes.plot(real_mu[0], real_mu[1], 'x', mew=2,
color=self.lik_ell.get_ec())
self.dots.axes.set_title('')
self.dots.figure.canvas.draw()
elif self.n < self.N:
# update dots
self.dots.set_data(self.data[:self.n+1, 0], self.data[:self.n+1, 1])
# update sample mean
self.smean.set_data(np.mean(self.data[:self.n+1, 0]),
np.mean(self.data[:self.n+1, 1]))
# compute posterior for current n
self.mu, self.cov = compute_posterior(data[self.n, :], self.mu,
self.cov, real_cov)
# update posterior ellipse
width, height, theta = get_cov_ellipse_params(self.cov)
self.post_ell.center = self.mu
self.post_ell.width = width
self.post_ell.height = height
self.post_ell.angle = theta
# update figure
self.dots.axes.set_title('%d more' % (self.N-self.n))
self.dots.figure.canvas.draw()
clicker_instance = clicker(data, prior_mu, prior_cov, dots, post_ell, lik_ell,
smean)
plt.show()