forked from dhruvbaldawa/project_euler
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path0036-base-10-base-2-palindrome.py
61 lines (53 loc) · 1.6 KB
/
0036-base-10-base-2-palindrome.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
"""
Problem 36
The decimal number, 585 = 1001001001 (binary), is palindromic in both bases.
Find the sum of all numbers, less than one million, which are palindromic in base 10 and base 2.
(Please note that the palindromic number, in either base, may not include leading zeros.)
"""
def number_to_binary(n):
"""
This method converts a given number to binary
It returns a list with the bits
"""
binary = []
while n != 0:
binary.insert(0, n%2)
n = n/2
return binary
def full_adder(a, b, carry = 0):
"""
A full adder, which adds 2 binary lists and
returns the resulting binary list.
The binary list holds bits of decimal numbers
"""
if len(a) < len(b):
difference = len(b) - len(a)
a = [0]*difference + a[:]
elif len(a) > len(b):
difference = len(a) - len(b)
b = [0]*difference + b[:]
assert len(a) == len(b)
answer = []
for i in reversed(range(len(a))):
sum_ = (a[i] ^ b[i]) ^ carry
carry = (a[i] & b[i]) | ((a[i] ^ b[i]) & carry)
answer.insert(0, sum_)
if carry == 1:
answer.insert(0, carry)
return answer
def the_usual_method():
start = 1
limit = 1000000
l = []
for i in range(start, limit):
# convert the number to binary
bin = number_to_binary(i)
# copy the binary
bin_rev = last[:]
# reverse the binary
bin_rev.reverse()
# check for the palindrome
if bin_rev == bin and str(i)[::-1] == str(i):
l.append(i)
return sum(l)
print "Answer:", the_usual_method()