-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·368 lines (280 loc) · 11.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import torch
import os
import numpy as np
from datasets import load_dataset
from torch.utils.tensorboard import SummaryWriter
from transformers import GPT2Tokenizer
from model import GPT, GPTConfig
from utils.entmax_scheduler import get_entmax_weight_scheduler
import argparse
import json
from tqdm import tqdm
import gc
HUGGINGFACE_TOKEN = "..."
TOKENIZER_ID = "..."
DATASET_ID = "..."
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
def collate_fn(batch):
input_ids = torch.tensor([b["input_ids"] for b in batch])
targets = torch.roll(input_ids, -1, dims=-1)
# here we ignore masking as it is already taken care of in the dataset
targets[:, -1] = -1 # ignore index is set to -1
return input_ids, targets
def get_total_grad_norm(model):
total_norm = 0
for p in model.parameters():
if p.grad is not None:
param_norm = p.grad.data.detach().cpu().norm(2)
total_norm += param_norm.item() ** 2
total_norm = total_norm ** (1.0 / 2)
return total_norm
def get_dataset(args):
test_dataset = load_dataset(
DATASET_ID,
split=f"train[0:{args.test_size}]",
cache_dir=args.cache_dir,
)
train_dataset = load_dataset(
DATASET_ID,
split=f"train[{args.test_size}:]",
cache_dir=args.cache_dir,
)
return train_dataset, test_dataset
def get_dataloaders(args, train_dataset, test_dataset):
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size,
collate_fn=collate_fn,
shuffle=True,
)
test_dataloader = torch.utils.data.DataLoader(
test_dataset,
batch_size=args.batch_size,
collate_fn=collate_fn,
shuffle=False,
)
return train_dataloader, test_dataloader
@torch.no_grad()
def eval_model(model, test_dataloader, max_iters=None):
model.eval()
losses = []
accs = []
for cnt, test_inputs in enumerate(test_dataloader):
input_ids, targets = test_inputs[0].cuda(), test_inputs[1].cuda()
logits, _, loss, _ = model(input_ids, targets=targets)
losses.append(loss.item())
preds = torch.argmax(logits, axis=-1)
acc = (preds == targets).float().mean().item()
accs.append(acc)
del loss, logits, preds, acc, input_ids, targets
if max_iters is not None and cnt >= max_iters:
break
return np.mean(losses), np.mean(accs)
def get_sparsity_loss(all_cumprobs, sparse_attention, sparsity_loss_weight):
if not sparse_attention:
return 0
# Ignore the last token as we do not make any predictions from it due to the shift
all_cumprobs = torch.stack(all_cumprobs, dim=0)
return (all_cumprobs[:, :, :, :-1, :] * sparsity_loss_weight).mean()
def main(args):
torch.manual_seed(args.seed)
num_gpus = torch.cuda.device_count()
if num_gpus <= 0:
raise ValueError("No GPU available")
tokenizer = GPT2Tokenizer.from_pretrained(
TOKENIZER_ID, use_auth_token=HUGGINGFACE_TOKEN
)
if args.pretrained:
model = GPT.from_pretrained(
args.pretrained,
override_args={
"sparse_attention": args.sparse_attention,
"sparse_attention_int_bias": args.sparse_attention_int_bias,
"int_n_embd": args.int_n_embd,
"propagate_in_depth": args.propagate_in_depth,
},
cache_dir=args.cache_dir,
)
else:
configuration = GPTConfig(
vocab_size=tokenizer.vocab_size,
sparse_attention=args.sparse_attention,
n_layer=args.n_layer,
sparse_attention_int_bias=args.sparse_attention_int_bias,
int_n_embd=args.int_n_embd,
propagate_in_depth=args.propagate_in_depth,
)
model = GPT(configuration)
print(model)
## Get loading directory
cnt = 0
log_dir = args.log_dir + f"/runs_{cnt}/"
while os.path.exists(log_dir):
cnt += 1
log_dir = args.log_dir + f"/runs_{cnt}/"
os.makedirs(log_dir)
argparse_dict = vars(args).copy()
with open(os.path.join(log_dir, "config.json"), "w") as fp:
json.dump(argparse_dict, fp, ensure_ascii=False, indent=4)
writer = SummaryWriter(log_dir)
writer.add_text("args", str(args))
## Get data
train_dataset, test_dataset = get_dataset(args)
train_dataloader, test_dataloader = get_dataloaders(
args, train_dataset, test_dataset
)
if args.optimizer == "adam":
opt = torch.optim.AdamW(
model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay
)
else:
raise ValueError(f"Unknown optimizer {args.optimizer}")
if args.warmup_steps > 0:
scheduler = torch.optim.lr_scheduler.LambdaLR(
opt,
lr_lambda=lambda step: min(
1.0, step / args.warmup_steps
), # Linear warmup over warmup_steps.
)
else:
scheduler = None
entmax_weight_scheduler = (
get_entmax_weight_scheduler(args.entmax_weight_scheduler)
if args.entmax_weight_scheduler
else None
)
global_step = 0
pbar = tqdm(total=args.max_steps)
iterator = iter(train_dataloader)
model = model.cuda()
device = torch.cuda.current_device()
while global_step <= args.max_steps:
### Update alphas in the alpha-sigmoid
if args.entmax_weight_scheduler:
val = entmax_weight_scheduler(global_step)
for layer_i in range(len(model.transformer.h)):
model.transformer.h[layer_i].attn.sparsity_alpha = val
for step in range(args.micro_steps):
try:
inputs = next(iterator)
except StopIteration:
iterator.close()
# force garbage collection
del iterator
gc.collect()
iterator = iter(train_dataloader)
inputs = next(iterator)
input_ids, targets = inputs[0].to(device), inputs[1].to(device)
# with ctx:
logits, all_cumprobs, loss, _ = model(
input_ids,
targets=targets,
)
sparisty_loss = get_sparsity_loss(
all_cumprobs,
args.sparse_attention,
args.sparsity_loss_weight,
)
total_loss = loss + sparisty_loss
total_loss = total_loss / args.micro_steps
total_loss.backward()
del (
total_loss,
all_cumprobs,
input_ids,
)
if step != args.micro_steps - 1:
del targets, logits, loss, sparisty_loss
if global_step % args.logging_step == 0:
print(f"Step {global_step} loss {loss} sparisty_loss {sparisty_loss}")
if global_step % args.logging_step == 0 and not args.debug:
writer.add_scalar("loss/train", loss.float(), global_step)
writer.add_scalar(
"loss/sparisty_loss",
sparisty_loss.float()
if torch.is_tensor(sparisty_loss)
else sparisty_loss,
global_step,
)
if args.entmax_weight_scheduler:
writer.add_scalar("entmax_weight", val, global_step)
preds = torch.argmax(logits, axis=-1)
acc = (preds == targets).float().mean().item()
writer.add_scalar("acc/train", acc, global_step)
if global_step % args.logging_step == 0:
writer.add_scalar(
"grad_norm_before", get_total_grad_norm(model), global_step
)
if args.clip is not None and args.clip > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
if global_step % args.logging_step == 0:
writer.add_scalar(
"grad_norm_after", get_total_grad_norm(model), global_step
)
opt.step()
opt.zero_grad()
if scheduler is not None:
scheduler.step()
if global_step % args.save_every == 0 and global_step > 0 and not args.debug:
torch.save(
model.state_dict(),
os.path.join(log_dir, f"model_step_{global_step}.pt"),
)
if global_step % args.eval_every == 0 and not args.debug:
loss, acc = eval_model(model, test_dataloader, max_iters=10)
writer.add_scalar("loss/test", loss, global_step)
writer.add_scalar("acc", acc, global_step)
model.train()
del loss, sparisty_loss, logits, targets
if global_step > args.max_steps:
break
global_step += 1
pbar.update(1)
# log learning rate
writer.add_scalar("lr", opt.param_groups[0]["lr"], global_step)
torch.save(
model.state_dict(),
os.path.join(log_dir, f"last_model_step_{global_step}.pt"),
)
def get_arguments(notebook=False, notebook_args=[]):
parser = argparse.ArgumentParser()
parser.add_argument("--log_dir", type=str, default="test")
parser.add_argument("--base_log_dir", type=str, default="logs")
parser.add_argument("--batch_size", type=int, default=8)
parser.add_argument("--learning_rate", type=float, default=1e-4)
parser.add_argument("--max_steps", type=int, default=25000)
parser.add_argument("--optimizer", type=str, default="adam")
parser.add_argument("--clip", type=float, default=None)
parser.add_argument("--weight_decay", type=float, default=0)
parser.add_argument("--warmup-steps", type=int, default=2000)
parser.add_argument("--save_every", type=int, default=25000)
parser.add_argument("--eval_every", type=int, default=1000)
parser.add_argument("--logging_step", type=int, default=100)
parser.add_argument("--test_size", type=int, default=2000)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--n_layer", type=int, default=12)
parser.add_argument("--entmax_weight_scheduler", type=str, default=None)
parser.add_argument("--debug", action="store_true", default=False)
parser.add_argument("--sparse_attention", type=str, default="false")
parser.add_argument("--pretrained", type=str, default=None)
parser.add_argument("--sparse_attention_int_bias", type=float, default=2.0)
parser.add_argument("--sparsity_loss_weight", type=float, default=0.3)
parser.add_argument("--micro_steps", type=int, default=1)
parser.add_argument("--int_n_embd", type=int, default=None)
parser.add_argument("--cache_dir", type=str, default=None)
parser.add_argument("--propagate_in_depth", type=str, default="false")
if notebook:
args = parser.parse_known_args(notebook_args)[0]
else:
args = parser.parse_args()
args.log_dir = os.path.join(
args.base_log_dir, args.log_dir if not args.debug else "debug"
)
args.sparse_attention = args.sparse_attention.lower() == "true"
args.propagate_in_depth = args.propagate_in_depth.lower() == "true"
args.dataset_id = DATASET_ID # for logging purposes
return args
if __name__ == "__main__":
args = get_arguments()
main(args)