From e48517bccf1f19bad41ad773303c5bc7acf06e79 Mon Sep 17 00:00:00 2001 From: browaeysrobin Date: Sat, 11 May 2024 10:15:05 +0200 Subject: [PATCH] Fix bug no default min_cells some functions --- DESCRIPTION | 2 +- R/condition_specific_celltypes.R | 8 ++++---- R/expression_processing.R | 1 + R/lr_target_correlation.R | 2 +- R/pipeline_wrappers.R | 8 ++++---- R/prioritization.R | 8 ++++---- man/add_extra_criterion.Rd | 2 +- man/generate_prioritization_tables.Rd | 2 +- ...zation_tables_condition_specific_celltypes_receiver.Rd | 2 +- ...tization_tables_condition_specific_celltypes_sender.Rd | 2 +- ...prioritization_tables_sampleAgnostic_multifactorial.Rd | 2 +- man/get_abundance_info.Rd | 2 +- man/get_top_n_lr_pairs.Rd | 2 +- man/lr_target_prior_cor_inference.Rd | 2 +- man/prioritize_condition_specific_receiver.Rd | 2 +- man/prioritize_condition_specific_sender.Rd | 2 +- man/process_abund_info.Rd | 1 + man/process_abundance_expression_info.Rd | 2 +- 18 files changed, 27 insertions(+), 25 deletions(-) diff --git a/DESCRIPTION b/DESCRIPTION index aa55f81..3813984 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -63,4 +63,4 @@ VignetteBuilder: knitr Remotes: github::saeyslab/nichenetr -RoxygenNote: 7.2.3 +RoxygenNote: 7.3.1 diff --git a/R/condition_specific_celltypes.R b/R/condition_specific_celltypes.R index ea45a6e..562097f 100644 --- a/R/condition_specific_celltypes.R +++ b/R/condition_specific_celltypes.R @@ -23,7 +23,7 @@ #' batches = NA #' contrasts_oi = c("'High-Low','Low-High'") #' contrast_tbl = tibble(contrast = c("High-Low","Low-High"), group = c("High","Low")) -#' +#' min_cells = 10 #' metadata_abundance = SummarizedExperiment::colData(sce)[,c(sample_id, group_id, celltype_id)] #' colnames(metadata_abundance) =c("sample_id", "group_id", "celltype_id") #' abundance_data = metadata_abundance %>% tibble::as_tibble() %>% dplyr::group_by(sample_id , celltype_id) %>% dplyr::count() %>% dplyr::inner_join(metadata_abundance %>% tibble::as_tibble() %>% dplyr::distinct(sample_id , group_id )) @@ -251,7 +251,7 @@ generate_prioritization_tables_condition_specific_celltypes_sender = function(se #' batches = NA #' contrasts_oi = c("'High-Low','Low-High'") #' contrast_tbl = tibble(contrast = c("High-Low","Low-High"), group = c("High","Low")) -#' +#' min_cells = 10 #' metadata_abundance = SummarizedExperiment::colData(sce)[,c(sample_id, group_id, celltype_id)] #' colnames(metadata_abundance) =c("sample_id", "group_id", "celltype_id") #' abundance_data = metadata_abundance %>% tibble::as_tibble() %>% dplyr::group_by(sample_id , celltype_id) %>% dplyr::count() %>% dplyr::inner_join(metadata_abundance %>% tibble::as_tibble() %>% dplyr::distinct(sample_id , group_id )) @@ -482,7 +482,7 @@ generate_prioritization_tables_condition_specific_celltypes_receiver = function( #' batches = NA #' contrasts_oi = c("'High-Low','Low-High'") #' contrast_tbl = tibble(contrast = c("High-Low","Low-High"), group = c("High","Low")) -#' +#' min_cells = 10 #' metadata_abundance = SummarizedExperiment::colData(sce)[,c(sample_id, group_id, celltype_id)] #' colnames(metadata_abundance) =c("sample_id", "group_id", "celltype_id") #' abundance_data = metadata_abundance %>% tibble::as_tibble() %>% dplyr::group_by(sample_id , celltype_id) %>% dplyr::count() %>% dplyr::inner_join(metadata_abundance %>% tibble::as_tibble() %>% dplyr::distinct(sample_id , group_id )) @@ -649,7 +649,7 @@ prioritize_condition_specific_sender <- function( #' batches = NA #' contrasts_oi = c("'High-Low','Low-High'") #' contrast_tbl = tibble(contrast = c("High-Low","Low-High"), group = c("High","Low")) -#' +#' min_cells = 10 #' metadata_abundance = SummarizedExperiment::colData(sce)[,c(sample_id, group_id, celltype_id)] #' colnames(metadata_abundance) =c("sample_id", "group_id", "celltype_id") #' abundance_data = metadata_abundance %>% tibble::as_tibble() %>% dplyr::group_by(sample_id , celltype_id) %>% dplyr::count() %>% dplyr::inner_join(metadata_abundance %>% tibble::as_tibble() %>% dplyr::distinct(sample_id , group_id )) diff --git a/R/expression_processing.R b/R/expression_processing.R index 53313bd..aa58e36 100644 --- a/R/expression_processing.R +++ b/R/expression_processing.R @@ -786,6 +786,7 @@ process_info_to_ic = function(info_object, ic_type = "sender", lr_network){ #' sample_id = "tumor" #' group_id = "pEMT" #' celltype_id = "celltype" +#' min_cells = 10 #' metadata_abundance = SummarizedExperiment::colData(sce)[,c(sample_id, group_id, celltype_id)] #' colnames(metadata_abundance) =c("sample_id", "group_id", "celltype_id") #' abundance_data = metadata_abundance %>% tibble::as_tibble() %>% dplyr::group_by(sample_id , celltype_id) %>% dplyr::count() %>% dplyr::inner_join(metadata_abundance %>% dplyr::distinct(sample_id , group_id )) diff --git a/R/lr_target_correlation.R b/R/lr_target_correlation.R index 889b5da..dadbe37 100644 --- a/R/lr_target_correlation.R +++ b/R/lr_target_correlation.R @@ -32,7 +32,7 @@ #' batches = NA #' contrasts_oi = c("'High-Low','Low-High'") #' contrast_tbl = tibble(contrast = c("High-Low","Low-High"), group = c("High","Low")) -#' +#' min_cells = 10 #' metadata_abundance = SummarizedExperiment::colData(sce)[,c(sample_id, group_id, celltype_id)] #' colnames(metadata_abundance) =c("sample_id", "group_id", "celltype_id") #' abundance_data = metadata_abundance %>% tibble::as_tibble() %>% dplyr::group_by(sample_id , celltype_id) %>% dplyr::count() %>% dplyr::inner_join(metadata_abundance %>% tibble::as_tibble() %>% dplyr::distinct(sample_id , group_id )) diff --git a/R/pipeline_wrappers.R b/R/pipeline_wrappers.R index 11bcf36..001d1ae 100644 --- a/R/pipeline_wrappers.R +++ b/R/pipeline_wrappers.R @@ -1,7 +1,7 @@ #' @title get_abundance_info #' #' @description \code{get_abundance_info} Visualize cell type abundances. -#' @usage get_abundance_info(sce, sample_id, group_id, celltype_id, min_cells, senders_oi, receivers_oi, batches = NA) +#' @usage get_abundance_info(sce, sample_id, group_id, celltype_id, min_cells = 10, senders_oi, receivers_oi, batches = NA) #' #' @inheritParams multi_nichenet_analysis #' @inheritParams combine_sender_receiver_info_ic @@ -27,7 +27,7 @@ #' #' @export #' -get_abundance_info = function(sce, sample_id, group_id, celltype_id, min_cells, senders_oi, receivers_oi, batches = NA){ +get_abundance_info = function(sce, sample_id, group_id, celltype_id, min_cells = 10, senders_oi, receivers_oi, batches = NA){ requireNamespace("dplyr") requireNamespace("ggplot2") @@ -211,7 +211,7 @@ get_abundance_info = function(sce, sample_id, group_id, celltype_id, min_cells, #' @title process_abundance_expression_info #' #' @description \code{process_abundance_expression_info} Visualize cell type abundances. Calculate the average and fraction of expression of each gene per sample and per group. Calculate relative abundances of cell types as well. Under the hood, the following functions are used: `get_avg_frac_exprs_abund`, `process_info_to_ic`, `combine_sender_receiver_info_ic` -#' @usage process_abundance_expression_info(sce, sample_id, group_id, celltype_id, min_cells, senders_oi, receivers_oi, lr_network, batches = NA, frq_list, abundance_info) +#' @usage process_abundance_expression_info(sce, sample_id, group_id, celltype_id, min_cells = 10, senders_oi, receivers_oi, lr_network, batches = NA, frq_list, abundance_info) #' #' @inheritParams multi_nichenet_analysis #' @inheritParams combine_sender_receiver_info_ic @@ -243,7 +243,7 @@ get_abundance_info = function(sce, sample_id, group_id, celltype_id, min_cells, #' #' @export #' -process_abundance_expression_info = function(sce, sample_id, group_id, celltype_id, min_cells, senders_oi, receivers_oi, lr_network, batches = NA, frq_list, abundance_info){ +process_abundance_expression_info = function(sce, sample_id, group_id, celltype_id, min_cells = 10, senders_oi, receivers_oi, lr_network, batches = NA, frq_list, abundance_info){ requireNamespace("dplyr") requireNamespace("ggplot2") diff --git a/R/prioritization.R b/R/prioritization.R index 0916e69..3f74b29 100644 --- a/R/prioritization.R +++ b/R/prioritization.R @@ -37,7 +37,7 @@ scale_quantile_adapted = function(x, outlier_cutoff = 0){ #' batches = NA #' contrasts_oi = c("'High-Low','Low-High'") #' contrast_tbl = tibble(contrast = c("High-Low","Low-High"), group = c("High","Low")) -#' +#' min_cells = 10 #' metadata_abundance = SummarizedExperiment::colData(sce)[,c(sample_id, group_id, celltype_id)] #' colnames(metadata_abundance) =c("sample_id", "group_id", "celltype_id") #' abundance_data = metadata_abundance %>% tibble::as_tibble() %>% dplyr::group_by(sample_id , celltype_id) %>% dplyr::count() %>% dplyr::inner_join(metadata_abundance %>% tibble::as_tibble() %>% dplyr::distinct(sample_id , group_id )) @@ -273,7 +273,7 @@ generate_prioritization_tables = function(sender_receiver_info, sender_receiver_ #' batches = NA #' contrasts_oi = c("'High-Low','Low-High'") #' contrast_tbl = tibble(contrast = c("High-Low","Low-High"), group = c("High","Low")) -#' +#' min_cells = 10 #' metadata_abundance = SummarizedExperiment::colData(sce)[,c(sample_id, group_id, celltype_id)] #' colnames(metadata_abundance) =c("sample_id", "group_id", "celltype_id") #' abundance_data = metadata_abundance %>% tibble::as_tibble() %>% dplyr::group_by(sample_id , celltype_id) %>% dplyr::count() %>% dplyr::inner_join(metadata_abundance %>% tibble::as_tibble() %>% dplyr::distinct(sample_id , group_id )) @@ -381,7 +381,7 @@ get_top_n_lr_pairs = function(prioritization_tables, top_n, groups_oi = NULL, se #' batches = NA #' contrasts_oi = c("'High-Low','Low-High'") #' contrast_tbl = tibble(contrast = c("High-Low","Low-High"), group = c("High","Low")) -#' +#' min_cells = 10 #' metadata_abundance = SummarizedExperiment::colData(sce)[,c(sample_id, group_id, celltype_id)] #' colnames(metadata_abundance) =c("sample_id", "group_id", "celltype_id") #' abundance_data = metadata_abundance %>% tibble::as_tibble() %>% dplyr::group_by(sample_id , celltype_id) %>% dplyr::count() %>% dplyr::inner_join(metadata_abundance %>% tibble::as_tibble() %>% dplyr::distinct(sample_id , group_id )) @@ -672,7 +672,7 @@ generate_prioritization_tables_tests = function(sender_receiver_info, sender_rec #' batches = NA #' contrasts_oi = c("'High-Low','Low-High'") #' contrast_tbl = tibble(contrast = c("High-Low","Low-High"), group = c("High","Low")) -#' +#' min_cells = 10 #' metadata_abundance = SummarizedExperiment::colData(sce)[,c(sample_id, group_id, celltype_id)] #' colnames(metadata_abundance) =c("sample_id", "group_id", "celltype_id") #' abundance_data = metadata_abundance %>% tibble::as_tibble() %>% dplyr::group_by(sample_id , celltype_id) %>% dplyr::count() %>% dplyr::inner_join(metadata_abundance %>% tibble::as_tibble() %>% dplyr::distinct(sample_id , group_id )) diff --git a/man/add_extra_criterion.Rd b/man/add_extra_criterion.Rd index 1f0336f..5a41a71 100644 --- a/man/add_extra_criterion.Rd +++ b/man/add_extra_criterion.Rd @@ -33,7 +33,7 @@ celltype_id = "celltype" batches = NA contrasts_oi = c("'High-Low','Low-High'") contrast_tbl = tibble(contrast = c("High-Low","Low-High"), group = c("High","Low")) - +min_cells = 10 metadata_abundance = SummarizedExperiment::colData(sce)[,c(sample_id, group_id, celltype_id)] colnames(metadata_abundance) =c("sample_id", "group_id", "celltype_id") abundance_data = metadata_abundance \%>\% tibble::as_tibble() \%>\% dplyr::group_by(sample_id , celltype_id) \%>\% dplyr::count() \%>\% dplyr::inner_join(metadata_abundance \%>\% tibble::as_tibble() \%>\% dplyr::distinct(sample_id , group_id )) diff --git a/man/generate_prioritization_tables.Rd b/man/generate_prioritization_tables.Rd index 1457e41..61650ad 100644 --- a/man/generate_prioritization_tables.Rd +++ b/man/generate_prioritization_tables.Rd @@ -50,7 +50,7 @@ celltype_id = "celltype" batches = NA contrasts_oi = c("'High-Low','Low-High'") contrast_tbl = tibble(contrast = c("High-Low","Low-High"), group = c("High","Low")) - +min_cells = 10 metadata_abundance = SummarizedExperiment::colData(sce)[,c(sample_id, group_id, celltype_id)] colnames(metadata_abundance) =c("sample_id", "group_id", "celltype_id") abundance_data = metadata_abundance \%>\% tibble::as_tibble() \%>\% dplyr::group_by(sample_id , celltype_id) \%>\% dplyr::count() \%>\% dplyr::inner_join(metadata_abundance \%>\% tibble::as_tibble() \%>\% dplyr::distinct(sample_id , group_id )) diff --git a/man/generate_prioritization_tables_condition_specific_celltypes_receiver.Rd b/man/generate_prioritization_tables_condition_specific_celltypes_receiver.Rd index 554a618..c12829e 100644 --- a/man/generate_prioritization_tables_condition_specific_celltypes_receiver.Rd +++ b/man/generate_prioritization_tables_condition_specific_celltypes_receiver.Rd @@ -50,7 +50,7 @@ celltype_id = "celltype" batches = NA contrasts_oi = c("'High-Low','Low-High'") contrast_tbl = tibble(contrast = c("High-Low","Low-High"), group = c("High","Low")) - +min_cells = 10 metadata_abundance = SummarizedExperiment::colData(sce)[,c(sample_id, group_id, celltype_id)] colnames(metadata_abundance) =c("sample_id", "group_id", "celltype_id") abundance_data = metadata_abundance \%>\% tibble::as_tibble() \%>\% dplyr::group_by(sample_id , celltype_id) \%>\% dplyr::count() \%>\% dplyr::inner_join(metadata_abundance \%>\% tibble::as_tibble() \%>\% dplyr::distinct(sample_id , group_id )) diff --git a/man/generate_prioritization_tables_condition_specific_celltypes_sender.Rd b/man/generate_prioritization_tables_condition_specific_celltypes_sender.Rd index 6e65073..74ea0db 100644 --- a/man/generate_prioritization_tables_condition_specific_celltypes_sender.Rd +++ b/man/generate_prioritization_tables_condition_specific_celltypes_sender.Rd @@ -50,7 +50,7 @@ celltype_id = "celltype" batches = NA contrasts_oi = c("'High-Low','Low-High'") contrast_tbl = tibble(contrast = c("High-Low","Low-High"), group = c("High","Low")) - +min_cells = 10 metadata_abundance = SummarizedExperiment::colData(sce)[,c(sample_id, group_id, celltype_id)] colnames(metadata_abundance) =c("sample_id", "group_id", "celltype_id") abundance_data = metadata_abundance \%>\% tibble::as_tibble() \%>\% dplyr::group_by(sample_id , celltype_id) \%>\% dplyr::count() \%>\% dplyr::inner_join(metadata_abundance \%>\% tibble::as_tibble() \%>\% dplyr::distinct(sample_id , group_id )) diff --git a/man/generate_prioritization_tables_sampleAgnostic_multifactorial.Rd b/man/generate_prioritization_tables_sampleAgnostic_multifactorial.Rd index 07f3be6..72d431f 100644 --- a/man/generate_prioritization_tables_sampleAgnostic_multifactorial.Rd +++ b/man/generate_prioritization_tables_sampleAgnostic_multifactorial.Rd @@ -50,7 +50,7 @@ celltype_id = "celltype" batches = NA contrasts_oi = c("'High-Low','Low-High'") contrast_tbl = tibble(contrast = c("High-Low","Low-High"), group = c("High","Low")) - +min_cells = 10 metadata_abundance = SummarizedExperiment::colData(sce)[,c(sample_id, group_id, celltype_id)] colnames(metadata_abundance) =c("sample_id", "group_id", "celltype_id") abundance_data = metadata_abundance \%>\% tibble::as_tibble() \%>\% dplyr::group_by(sample_id , celltype_id) \%>\% dplyr::count() \%>\% dplyr::inner_join(metadata_abundance \%>\% tibble::as_tibble() \%>\% dplyr::distinct(sample_id , group_id )) diff --git a/man/get_abundance_info.Rd b/man/get_abundance_info.Rd index 2fb8ae6..27692a2 100644 --- a/man/get_abundance_info.Rd +++ b/man/get_abundance_info.Rd @@ -4,7 +4,7 @@ \alias{get_abundance_info} \title{get_abundance_info} \usage{ -get_abundance_info(sce, sample_id, group_id, celltype_id, min_cells, senders_oi, receivers_oi, batches = NA) +get_abundance_info(sce, sample_id, group_id, celltype_id, min_cells = 10, senders_oi, receivers_oi, batches = NA) } \arguments{ \item{sce}{SingleCellExperiment object of the scRNAseq data of interest. Contains both sender and receiver cell types.} diff --git a/man/get_top_n_lr_pairs.Rd b/man/get_top_n_lr_pairs.Rd index 75ba25f..94f2d0e 100644 --- a/man/get_top_n_lr_pairs.Rd +++ b/man/get_top_n_lr_pairs.Rd @@ -37,7 +37,7 @@ celltype_id = "celltype" batches = NA contrasts_oi = c("'High-Low','Low-High'") contrast_tbl = tibble(contrast = c("High-Low","Low-High"), group = c("High","Low")) - +min_cells = 10 metadata_abundance = SummarizedExperiment::colData(sce)[,c(sample_id, group_id, celltype_id)] colnames(metadata_abundance) =c("sample_id", "group_id", "celltype_id") abundance_data = metadata_abundance \%>\% tibble::as_tibble() \%>\% dplyr::group_by(sample_id , celltype_id) \%>\% dplyr::count() \%>\% dplyr::inner_join(metadata_abundance \%>\% tibble::as_tibble() \%>\% dplyr::distinct(sample_id , group_id )) diff --git a/man/lr_target_prior_cor_inference.Rd b/man/lr_target_prior_cor_inference.Rd index 5257c97..a1621b6 100644 --- a/man/lr_target_prior_cor_inference.Rd +++ b/man/lr_target_prior_cor_inference.Rd @@ -45,7 +45,7 @@ celltype_id = "celltype" batches = NA contrasts_oi = c("'High-Low','Low-High'") contrast_tbl = tibble(contrast = c("High-Low","Low-High"), group = c("High","Low")) - +min_cells = 10 metadata_abundance = SummarizedExperiment::colData(sce)[,c(sample_id, group_id, celltype_id)] colnames(metadata_abundance) =c("sample_id", "group_id", "celltype_id") abundance_data = metadata_abundance \%>\% tibble::as_tibble() \%>\% dplyr::group_by(sample_id , celltype_id) \%>\% dplyr::count() \%>\% dplyr::inner_join(metadata_abundance \%>\% tibble::as_tibble() \%>\% dplyr::distinct(sample_id , group_id )) diff --git a/man/prioritize_condition_specific_receiver.Rd b/man/prioritize_condition_specific_receiver.Rd index 6cba11c..fda5fe0 100644 --- a/man/prioritize_condition_specific_receiver.Rd +++ b/man/prioritize_condition_specific_receiver.Rd @@ -49,7 +49,7 @@ celltype_id = "celltype" batches = NA contrasts_oi = c("'High-Low','Low-High'") contrast_tbl = tibble(contrast = c("High-Low","Low-High"), group = c("High","Low")) - +min_cells = 10 metadata_abundance = SummarizedExperiment::colData(sce)[,c(sample_id, group_id, celltype_id)] colnames(metadata_abundance) =c("sample_id", "group_id", "celltype_id") abundance_data = metadata_abundance \%>\% tibble::as_tibble() \%>\% dplyr::group_by(sample_id , celltype_id) \%>\% dplyr::count() \%>\% dplyr::inner_join(metadata_abundance \%>\% tibble::as_tibble() \%>\% dplyr::distinct(sample_id , group_id )) diff --git a/man/prioritize_condition_specific_sender.Rd b/man/prioritize_condition_specific_sender.Rd index fe00b3f..986b73b 100644 --- a/man/prioritize_condition_specific_sender.Rd +++ b/man/prioritize_condition_specific_sender.Rd @@ -49,7 +49,7 @@ celltype_id = "celltype" batches = NA contrasts_oi = c("'High-Low','Low-High'") contrast_tbl = tibble(contrast = c("High-Low","Low-High"), group = c("High","Low")) - +min_cells = 10 metadata_abundance = SummarizedExperiment::colData(sce)[,c(sample_id, group_id, celltype_id)] colnames(metadata_abundance) =c("sample_id", "group_id", "celltype_id") abundance_data = metadata_abundance \%>\% tibble::as_tibble() \%>\% dplyr::group_by(sample_id , celltype_id) \%>\% dplyr::count() \%>\% dplyr::inner_join(metadata_abundance \%>\% tibble::as_tibble() \%>\% dplyr::distinct(sample_id , group_id )) diff --git a/man/process_abund_info.Rd b/man/process_abund_info.Rd index 280b343..0900dd8 100644 --- a/man/process_abund_info.Rd +++ b/man/process_abund_info.Rd @@ -23,6 +23,7 @@ library(dplyr) sample_id = "tumor" group_id = "pEMT" celltype_id = "celltype" +min_cells = 10 metadata_abundance = SummarizedExperiment::colData(sce)[,c(sample_id, group_id, celltype_id)] colnames(metadata_abundance) =c("sample_id", "group_id", "celltype_id") abundance_data = metadata_abundance \%>\% tibble::as_tibble() \%>\% dplyr::group_by(sample_id , celltype_id) \%>\% dplyr::count() \%>\% dplyr::inner_join(metadata_abundance \%>\% dplyr::distinct(sample_id , group_id )) diff --git a/man/process_abundance_expression_info.Rd b/man/process_abundance_expression_info.Rd index 944074f..46ab785 100644 --- a/man/process_abundance_expression_info.Rd +++ b/man/process_abundance_expression_info.Rd @@ -4,7 +4,7 @@ \alias{process_abundance_expression_info} \title{process_abundance_expression_info} \usage{ -process_abundance_expression_info(sce, sample_id, group_id, celltype_id, min_cells, senders_oi, receivers_oi, lr_network, batches = NA, frq_list, abundance_info) +process_abundance_expression_info(sce, sample_id, group_id, celltype_id, min_cells = 10, senders_oi, receivers_oi, lr_network, batches = NA, frq_list, abundance_info) } \arguments{ \item{sce}{SingleCellExperiment object of the scRNAseq data of interest. Contains both sender and receiver cell types.}