-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathshared.py
256 lines (222 loc) · 8.47 KB
/
shared.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import pybamm
import numpy as np
import scipy.interpolate as interp
import matplotlib.pyplot as plt
def make_comsol_model(comsol_variables, mesh, param, z_interp=None, thermal=True):
"Make Comsol 'model' for comparison"
print("Start making COMSOL model")
# comsol time
comsol_t = comsol_variables["time"]
interp_kind = "cubic"
# discharge timescale
tau = param.evaluate(pybamm.standard_parameters_lithium_ion.tau_discharge)
# interpolate using *dimensional* space
L_z = param.evaluate(pybamm.standard_parameters_lithium_ion.L_z)
if z_interp is None:
pybamm_z = mesh["current collector"][0].nodes
z_interp = pybamm_z * L_z
def get_interp_fun_curr_coll(variable_name):
"""
Interpolate in space to plotting nodes, and then create function to interpolate
in time that can be called for plotting at any t.
"""
comsol_z = comsol_variables[variable_name + "_z"]
variable = comsol_variables[variable_name]
variable = interp.interp1d(comsol_z, variable, axis=0, kind=interp_kind)(
z_interp
)
def myinterp(t):
return interp.interp1d(comsol_t, variable, kind=interp_kind)(t)[
:, np.newaxis
]
# Make sure to use dimensional time
fun = pybamm.Function(myinterp, pybamm.t * tau, name=variable_name + "_comsol")
fun.domain = "current collector"
return fun
# Create interpolating functions to put in comsol_model.variables dict
comsol_voltage = interp.interp1d(
comsol_t, comsol_variables["voltage"], kind=interp_kind
)
comsol_phi_s_cn = get_interp_fun_curr_coll("phi_s_cn")
comsol_phi_s_cp = get_interp_fun_curr_coll("phi_s_cp")
comsol_current = get_interp_fun_curr_coll("current")
# Create comsol model with dictionary of Matrix variables
comsol_model = pybamm.BaseModel()
comsol_model.variables = {
"Terminal voltage [V]": pybamm.Function(
comsol_voltage, pybamm.t * tau, name="voltage_comsol"
),
"Negative current collector potential [V]": comsol_phi_s_cn,
"Positive current collector potential [V]": comsol_phi_s_cp,
"Current collector current density [A.m-2]": comsol_current,
}
# Add thermal variables
if thermal:
comsol_vol_av_temperature = interp.interp1d(
comsol_t, comsol_variables["volume-averaged temperature"], kind=interp_kind
)
comsol_temperature = get_interp_fun_curr_coll("temperature")
comsol_model.variables.update(
{
"X-averaged cell temperature [K]": comsol_temperature,
"Volume-averaged cell temperature [K]": pybamm.Function(
comsol_vol_av_temperature,
pybamm.t * tau,
name="av_temperature_comsol",
),
}
)
# Add concentrations if provided
if "c_s_n" in comsol_variables.keys():
comsol_c_s_n = get_interp_fun_curr_coll("c_s_n")
comsol_model.variables.update(
{
"X-averaged negative particle surface concentration [mol.m-3]": comsol_c_s_n
}
)
if "c_s_p" in comsol_variables.keys():
comsol_c_s_p = get_interp_fun_curr_coll("c_s_p")
comsol_model.variables.update(
{
"X-averaged positive particle surface concentration [mol.m-3]": comsol_c_s_p
}
)
comsol_model.z_interp = z_interp
comsol_model.t = comsol_t
print("Finish making COMSOL model")
return comsol_model
def plot_tz_var(
t_plot,
z_plot,
t_slices,
var_name,
units,
comsol_var_fun,
pybamm_var_fun,
pybamm_bar_var_fun,
param,
cmap="viridis",
):
# non-dim t and z
L_z = param.evaluate(pybamm.standard_parameters_lithium_ion.L_z)
tau = param.evaluate(pybamm.standard_parameters_lithium_ion.tau_discharge)
z_plot_non_dim = z_plot / L_z
t_non_dim = t_plot / tau
t_slices_non_dim = t_slices / tau
# set up figure
fig, ax = plt.subplots(2, 2, figsize=(6.4, 4))
fig.subplots_adjust(
left=0.15, bottom=0.1, right=0.95, top=0.95, wspace=0.4, hspace=0.8
)
# plot comsol var
comsol_var = comsol_var_fun(t=t_non_dim, z=z_plot_non_dim)
comsol_var_plot = ax[0, 0].pcolormesh(
z_plot * 1e3, t_plot, np.transpose(comsol_var), shading="gouraud", cmap=cmap
)
# set formats for current collector potentials
if "cn" in var_name:
format = "%.0e"
elif "cp" in var_name:
format = "%.0e"
else:
format = None
fig.colorbar(
comsol_var_plot,
ax=ax,
format=format,
location="top",
shrink=0.42,
aspect=20,
anchor=(0.0, 0.0),
)
# plot slices
ccmap = plt.get_cmap("inferno")
for ind, t in enumerate(t_slices_non_dim):
color = ccmap(float(ind) / len(t_slices))
comsol_var_slice = comsol_var_fun(t=t, z=z_plot_non_dim)
pybamm_var_slice = pybamm_var_fun(t=t, z=z_plot_non_dim)
pybamm_bar_var_slice = pybamm_bar_var_fun(t=np.array([t]), z=z_plot_non_dim)
ax[0, 1].plot(
z_plot * 1e3, comsol_var_slice, "o", fillstyle="none", color=color
)
ax[0, 1].plot(
z_plot * 1e3,
pybamm_var_slice,
"-",
color=color,
label="{:.0f} s".format(t_slices[ind]),
)
ax[0, 1].plot(z_plot * 1e3, pybamm_bar_var_slice, ":", color=color)
# add dummy points for legend of styles
comsol_p, = ax[0, 1].plot(np.nan, np.nan, "ko", fillstyle="none")
pybamm_p, = ax[0, 1].plot(np.nan, np.nan, "k-", fillstyle="none")
pybamm_bar_p, = ax[0, 1].plot(np.nan, np.nan, "k:", fillstyle="none")
# compute errors
pybamm_var = pybamm_var_fun(t=t_non_dim, z=z_plot_non_dim)
pybamm_bar_var = pybamm_bar_var_fun(t=t_non_dim, z=z_plot_non_dim)
error = np.abs(comsol_var - pybamm_var)
error_bar = np.abs(comsol_var - pybamm_bar_var)
# plot time averaged error
ax[1, 0].plot(z_plot * 1e3, np.mean(error, axis=1), "k-", label=r"$1+1$D")
ax[1, 0].plot(z_plot * 1e3, np.mean(error_bar, axis=1), "k:", label="DFNCC")
# plot z averaged error
ax[1, 1].plot(t_plot, np.mean(error, axis=0), "k-", label=r"$1+1$D")
ax[1, 1].plot(t_plot, np.mean(error_bar, axis=0), "k:", label="DFNCC")
# set ticks
ax[0, 0].tick_params(which="both")
ax[0, 1].tick_params(which="both")
ax[1, 0].tick_params(which="both")
if var_name in ["$\mathcal{I}^*$"]:
ax[1, 0].set_yscale("log")
ax[1, 0].set_yticks = [1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e-2, 1e-1, 1]
else:
ax[1, 0].ticklabel_format(style="sci", scilimits=(-2, 2), axis="y")
ax[1, 1].tick_params(which="both")
if var_name in ["$\phi^*_{\mathrm{s,cn}}$", "$\phi^*_{\mathrm{s,cp}} - V^*$"]:
ax[1, 0].ticklabel_format(style="sci", scilimits=(-2, 2), axis="y")
else:
ax[1, 1].set_yscale("log")
ax[1, 1].set_yticks = [1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e-2, 1e-1, 1]
# set labels
ax[0, 0].set_xlabel(r"$z^*$ [mm]")
ax[0, 0].set_ylabel(r"$t^*$ [s]")
ax[0, 0].set_title(r"{} {}".format(var_name, units), y=1.5)
ax[0, 1].set_xlabel(r"$z^*$ [mm]")
ax[0, 1].set_ylabel(r"{}".format(var_name))
ax[1, 0].set_xlabel(r"$z^*$ [mm]")
ax[1, 0].set_ylabel("Time-averaged" + "\n" + r"absolute error {}".format(units))
ax[1, 1].set_xlabel(r"$t^*$ [s]")
ax[1, 1].set_ylabel("Space-averaged" + "\n" + r"absolute error {}".format(units))
ax[0, 0].text(-0.1, 1.6, "(a)", transform=ax[0, 0].transAxes)
ax[0, 1].text(-0.1, 1.6, "(b)", transform=ax[0, 1].transAxes)
ax[1, 0].text(-0.1, 1.2, "(c)", transform=ax[1, 0].transAxes)
ax[1, 1].text(-0.1, 1.2, "(d)", transform=ax[1, 1].transAxes)
leg1 = ax[0, 1].legend(
bbox_to_anchor=(0, 1.1, 1.0, 0.102),
loc="lower left",
borderaxespad=0.0,
ncol=3,
mode="expand",
)
leg2 = ax[0, 1].legend(
[comsol_p, pybamm_p, pybamm_bar_p],
["COMSOL", r"$1+1$D", "DFNCC"],
bbox_to_anchor=(0, 1.5, 1.0, 0.102),
loc="lower left",
borderaxespad=0.0,
ncol=3,
mode="expand",
)
ax[0, 1].add_artist(leg1)
ax[1, 0].legend(
bbox_to_anchor=(0.0, 1.1, 1.0, 0.102),
loc="lower right",
borderaxespad=0.0,
ncol=3,
)
ax[1, 1].legend(
bbox_to_anchor=(0.0, 1.1, 1.0, 0.102),
loc="lower right",
borderaxespad=0.0,
ncol=3,
)