-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeometry.py
271 lines (206 loc) · 6.69 KB
/
geometry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import math
# Invert float or vector; return signed infinity for +-0
def inv(x):
# Note vectors are never equal to 0
return 1./x if x != 0. else math.copysign(math.inf, x)
def clamp(x, low, high):
if isinstance(x, Vec3):
return x.max(low).min(high)
return min(max(x, low), high)
def _broadcast(x):
if hasattr(x, '__iter__'):
return x
return x, x, x
class Vec3:
__slots__ = ('x', 'y', 'z')
def __init__(self, x=0.0, y=None, z=None, unit=False):
if y is z is None:
x, y, z = _broadcast(x)
self.x = float(x)
self.y = float(y)
self.z = float(z)
if unit:
self.normalize()
def __eq__(self, other):
return (isinstance(other, Vec3) and
self.x == other.x and self.y == other.y and self.z == other.z)
def __bool__(self):
return self.x or self.y or self.z
def len(self):
return math.sqrt(self.x**2 + self.y**2 + self.z**2)
def len_sq(self):
return self.x**2 + self.y**2 + self.z**2
def unit(self):
return self and self / self.len()
def normalize(self):
self /= self.len() or 1
def dot(self, other):
x, y, z = other
return self.x*x + self.y*y + self.z*z
__matmul__ = __rmatmul__ = dot
def cross(self, other):
x, y, z = other
return Vec3(self.y*z - self.z*y,
self.z*x - self.x*z,
self.x*y - self.y*x)
def __pos__(self):
return Vec3(self.x, self.y, self.z)
def __neg__(self):
return Vec3(-self.x, -self.y, -self.z)
def __abs__(self):
return Vec3(abs(self.x), abs(self.y), abs(self.z))
def __add__(self, other):
x, y, z = _broadcast(other)
return Vec3(self.x+x, self.y+y, self.z+z)
def __sub__(self, other):
x, y, z = _broadcast(other)
return Vec3(self.x-x, self.y-y, self.z-z)
def __mul__(self, other):
x, y, z = _broadcast(other)
return Vec3(self.x*x, self.y*y, self.z*z)
def __rmul__(self, other):
return Vec3(self.x*other, self.y*other, self.z*other)
def __truediv__(self, other):
return self*inv(other)
def __rtruediv__(self, other):
return Vec3(other*inv(self.x), other*inv(self.y), other*inv(self.z))
def __pow__(self, other):
return Vec3(self.x**other, self.y**other, self.z**other)
def __iadd__(self, other):
x, y, z = _broadcast(other)
self.x += x
self.y += y
self.z += z
return self
def __isub__(self, other):
x, y, z = _broadcast(other)
self.x -= x
self.y -= y
self.z -= z
return self
def __imul__(self, other):
x, y, z = _broadcast(other)
self.x *= x
self.y *= y
self.z *= z
return self
def __itruediv__(self, other):
self *= inv(other)
return self
def __ipow__(self, other):
self.x **= other
self.y **= other
self.z **= other
return self
def __repr__(self):
return 'Vec3(%r, %r, %r)' % (self.x, self.y, self.z)
def __len__(self):
return 3
def __getitem__(self, index):
return (self.x, self.y, self.z)[index]
def __setitem__(self, index, value):
elts = [self.x, self.y, self.z]
elts[index] = value
(self.x, self.y, self.z) = elts
def __iter__(self):
yield self.x
yield self.y
yield self.z
def __getattr__(self, name):
if set(name) <= {'x', 'y', 'z'}:
return [getattr(self, c) for c in name]
return self.__getattribute__(name)
def __setattr__(self, name, value):
if len(name) > 1 and set(name) <= {'x', 'y', 'z'}:
for c, v in zip(name, value):
setattr(self, c, v)
else:
super().__setattr__(name, value)
def min(self, other):
x, y, z = _broadcast(other)
return Vec3(min(self.x, x), min(self.y, y), min(self.z, z))
def max(self, other):
x, y, z = _broadcast(other)
return Vec3(max(self.x, x), max(self.y, y), max(self.z, z))
class Ray:
def __init__(self, o, d, unit=True):
self.o = Vec3(o)
self.d = Vec3(d, unit=unit)
def __call__(self, t):
return self.o + self.d*t
def __repr__(self):
return 'Ray(%r, %r)' % (self.o, self.d)
class Sphere:
def __init__(self, c, r):
self.c = Vec3(c)
self.r = float(r)
def __repr__(self):
return 'Sphere(%r, %r)' % (self.c, self.r)
def intersect(self, ray):
oc = self.c - ray.o
d_oc = ray.d.dot(oc)
d_d = ray.d.len_sq() # 1 for unit vector
disc = d_oc**2 - d_d*(oc.len_sq() - self.r**2)
if disc < 0:
return -1.
root = math.sqrt(disc)
if d_oc - root >= 0:
return (d_oc - root)/d_d
if d_oc + root >= 0:
return (d_oc + root)/d_d
return -1.
class Plane:
def __init__(self, n, d, unit=True):
self.n = Vec3(n, unit=unit)
self.d = float(d)
def __repr__(self):
return 'Plane(%r, %r)' % (self.n, self.d)
def intersect(self, ray):
# Avoid divide by zero
d_n = ray.d.dot(self.n) + 1e-20
t = (self.d - ray.o.dot(self.n)) / d_n
return t if t >= 0 else -1.
class Triangle:
def __init__(self, v1, v2, v3):
self.v1 = Vec3(v1)
self.v2 = Vec3(v2)
self.v3 = Vec3(v3)
def __repr__(self):
return 'Triangle(%r, %r, %r)' % (self.v1, self.v2, self.v3)
def intersect(self, ray):
# Todo: bary coordinates?
v1, v2, v3 = self.v1, self.v2, self.v3
n = (v2 - v1).cross(v3 - v1)
d_n = ray.d.dot(n) + 1e-20
ov1, ov2, ov3 = v1 - ray.o, v2 - ray.o, v3 - ray.o
if (ov1.cross(ov2).dot(ray.d) * d_n < 0. or
ov2.cross(ov3).dot(ray.d) * d_n < 0. or
ov3.cross(ov1).dot(ray.d) * d_n < 0.):
return -1.
# Plane intersection
t = n.dot(v1 - ray.o) / d_n
if t < 0:
return -1.
return t
class BBox:
def __init__(self, p1, p2):
self.p1 = Vec3(p1)
self.p2 = Vec3(p2)
@property
def size(self):
return self.p2 - self.p1
@property
def center(self):
return (self.p1 + self.p2) / 2.
def __repr__(self):
return 'BBox(%r, %r)' % (self.p1, self.p2)
def intersect(self, ray):
# Avoid divide by zero
dinv = 1 / (ray.d + 1e-20)
t1 = (self.p1 - ray.o)*dinv
t2 = (self.p2 - ray.o)*dinv
tmin = max(t1.min(t2))
tmax = min(t1.max(t2))
if tmin > tmax or tmax < 0.: return -1.
if tmin < 0.: return tmax # or 0
return tmin