-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlevel_33.py
34 lines (30 loc) · 1.15 KB
/
level_33.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from PIL import Image
from scipy.stats import itemfreq
from pprint import pprint
import math, requests
import numpy as np
def get_img():
url = "http://www.pythonchallenge.com/pc/rock/beer2.png"
data = requests.get(url, auth=('kohsamui', 'thailand')).content
open('./image/beer2.png', 'wb').write(data)
def get_done(im):
im_data = np.array(list(im.getdata()))
im_data_stat = itemfreq(im_data)
pprint(im_data_stat)
print("*********************************************************")
pprint([np.sqrt(i) for i in np.cumsum(im_data_stat[:, 1])])
for i in range(im_data_stat.shape[0] - 2, 0, -2):
newIm_data = im_data[np.where(im_data < im_data_stat[i, 0])]
idx_0 = np.where(newIm_data == newIm_data.max())
idx_1 = np.where(newIm_data != newIm_data.max())
newIm_data[idx_0] = 0
newIm_data[idx_1] = 1
size = int(np.sqrt(len(newIm_data)))
newIm = Image.new('1', (size, size))
newIm.putdata(newIm_data)
newIm.save('./image/level_33/level_33_res%s.png' % i)
if __name__ == '__main__':
# get_img()
im = Image.open('./image/beer2.png')
get_done(im)
# gremlins