From c4d3c0cfcd9bad0858eab0a89dbb75f11069450d Mon Sep 17 00:00:00 2001 From: rberch <112828860+rberch@users.noreply.github.com> Date: Thu, 16 Mar 2023 09:44:08 -0600 Subject: [PATCH] Adding an a README file --- README.md | 61 +++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 61 insertions(+) create mode 100644 README.md diff --git a/README.md b/README.md new file mode 100644 index 0000000..38a5878 --- /dev/null +++ b/README.md @@ -0,0 +1,61 @@ +# VIF-package +VIFpkg is an R package that computes the Variance Inflation Factor (VIF) of predictor variables when we have multicollinearity issues. +The main funtion is VIFsM() which finds the VIF values for the variables. The other functions are Plot, which is used to plot the VIF values, and summarY which prints out the VIF values. + + +## Using the VIFsM() function to find VIF on a predictor dataset in R + + +### When Interested in the VIF of the current data (multi = FALSE, as in default) + +```{r setup} + +# load the VIFpkg pacakge + +library(VIFpkg) + +# Using Boston data from MASS package for our example + +df <- data.frame(MASS::Boston[,-1]) + +# Find VIF values + +xs <- VIFsM(df, multi=FALSE,maxim = 4) + +# View the results + +summarY(object=xs) + + +# Plot the VIF values + +Plot(x = xs,maxx = 4) + + + + + +``` + + + +### When Interested in checking the VIF of the data and dropping the variable with VIF > maxim + + +```{r, fig.height=12, fig.width=10} +# Find VIF values + +xs <- VIFsM(df, multi=TRUE,maxim = 4) + +# View the results + +summarY(object=xs, multi = TRUE) + + +# Plot the VIF values + +Plot(x = xs,multi = TRUE, maxx = 4) + +``` + +