-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata.py
260 lines (230 loc) · 8.95 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
#!/usr/bin/env python
# coding=utf-8
from utils import normalize_np
import staintools
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import pandas as pd
import lmdb
import pyarrow as pa
from PIL import Image
from tqdm import tqdm
import numpy as np
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
from glob import glob
import os
import random
import six
import copy
import pickle
# from utils import Compose, ToTensor
from utils import normalize_np
def read_pl(path):
with open(path, "rb") as f:
x = pickle.load(f)
return x
def random_sample(paths, num=50):
if len(paths) < num:
selected_paths = np.random.choice(paths, num, replace=True).tolist()
else:
selected_paths = random.sample(paths, num)
return selected_paths
def row_string_combine(x):
if str(x['coord_x']).endswith('0'):
coord_x = str(int(x["coord_x"]))
else:
coord_x = str(x['coord_x'])
print("~~~~~~~~~~~~warning~~~~~~~~~~")
if str(x['coord_y']).endswith('0'):
coord_y = str(int(x["coord_y"]))
else:
coord_y = str(x['coord_y'])
print("~~~~~~~~~~~~warning~~~~~~~~~~")
return coord_x + "x" + coord_y + ".png"
def random_sample_cluster(df, k):
df = df.groupby("label").apply(
lambda x: x.sample(k//10) if len(x) >= 5 else x.sample(5, replace=True)
).reset_index(drop=True)
path = df.apply(lambda x: row_string_combine(x), axis=1)
df["path"] = path
return df
def get_case_imgs(case_dir):
return glob(case_dir + "/*.png")
class MILDataset(Dataset):
def __init__(self, csv_path, lmdb_dir, k, transform=None):
df = pd.read_csv(csv_path)
self.transform = transform
self.case_dirs = list(df.slides_name)
self.labels = list(df.label)
self.k = k
self.env = lmdb.open(lmdb_dir, readonly=True, lock=False,
readahead=False, meminit=False)
# with self.env.begin(write=False) as txn:
# self.length = pa.deserialize(txn.get(b'__len__'))
# self.keys = pa.deserialize(txn.get(b'__keys__'))
def __len__(self):
# return len(self.case_dirs)
return len(self.case_dirs)
def __getitem__(self, index):
img = None
samples = []
env = self.env
image_paths = get_case_imgs(self.case_dirs[index])
selected_paths = random_sample(image_paths, num=self.k)
# selected_paths = copy.deepcopy(random_sample(image_paths))
# selected_paths = copy.deepcopy(image_paths[-50:])
with env.begin(write=False) as txn:
for selected_path in selected_paths:
flag = selected_path.split("/")[-2] + "_" + selected_path.split("/")[-1]
byteflow = txn.get(flag.encode())
imgbuf = pa.deserialize(byteflow)
buf = six.BytesIO()
buf.write(imgbuf)
buf.seek(0)
img = Image.open(buf).convert("RGB")
samples.append(img)
if self.transform is not None:
trans_samples = []
for sample in samples:
sample = self.transform(sample)
trans_samples.append(sample)
samples = torch.stack(trans_samples)
case_name = os.path.split(self.case_dirs[index])[1]
return samples, self.labels[index], case_name
class VisMILDataset(Dataset):
def __init__(self, csv_path, lmdb_dir, k, transform=None):
df = pd.read_csv(csv_path)
self.transform = transform
self.case_dirs = list(df.slides_name)
self.labels = list(df.label)
self.k = k
self.env = lmdb.open(lmdb_dir, readonly=True, lock=False,
readahead=False, meminit=False)
def __len__(self):
return len(self.case_dirs)
def __getitem__(self, index):
img = None
samples = []
env = self.env
image_paths = get_case_imgs(self.case_dirs[index])
selected_paths = random_sample(image_paths, num=self.k)
with env.begin(write=False) as txn:
for selected_path in selected_paths:
flag = selected_path.split('/')[-2] + "_" + selected_path.split('/')[-1]
byteflow = txn.get(flag.encode())
imgbuf = pa.deserialize(byteflow)
buf = six.BytesIO()
buf.write(imgbuf)
buf.seek(0)
img = Image.open(buf).convert('RGB')
samples.append(img)
if self.transform is not None:
trans_samples = []
for sample in samples:
sample = self.transform(sample)
trans_samples.append(sample)
samples = torch.stack(trans_samples)
case_name = os.path.split(self.case_dirs[index])[1]
return samples, self.labels[index], case_name, selected_paths
class CMILDataset(Dataset):
def __init__(self, csv_path, cluster_pl_path,
lmdb_dir, k, transform=None):
df = pd.read_csv(csv_path)
self.cluster_dict = read_pl(cluster_pl_path)
self.transform = transform
self.case_dirs = list(df.slides_name)
self.labels = list(df.label)
self.k = k
self.env = lmdb.open(lmdb_dir, readonly=True, lock=False,
readahead=False, meminit=False)
def __len__(self):
return len(self.case_dirs)
def __getitem__(self, index):
img = None
samples = []
env = self.env
case_name = os.path.split(self.case_dirs[index])[1]
case_df = self.cluster_dict["dfs"][
self.cluster_dict["slide_names"].index(case_name)
]
selected_df = random_sample_cluster(case_df, self.k)
selected_paths = list(selected_df.path)
with env.begin(write=False) as txn:
for selected_path in selected_paths:
flag = case_name + "_" + selected_path
try:
byteflow = txn.get(flag.encode())
imgbuf = pa.deserialize(byteflow)
except TypeError:
print(flag)
print(case_name)
break
buf = six.BytesIO()
buf.write(imgbuf)
buf.seek(0)
img = Image.open(buf).convert("RGB")
samples.append(img)
if self.transform is not None:
trans_samples = []
for sample in samples:
sample = self.transform(sample)
trans_samples.append(sample)
samples = torch.stack(trans_samples)
return samples, self.labels[index], case_name
if __name__ == "__main__":
# csv_path = "./total.csv"
# lmdb_dir = "./lmdb_dir"
# target_img_path = "../Vahadane/exam_imgs/36616x32520.png"
csv_path = "./result/ts_bs_res_100_50/tmp.csv"
lmdb_dir = "/mnt/usb2/share_data/caolei/MIA_xiugao/lmdb_dir_ts_bs"
# transform = Compose([ToTensor()])
transform = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
])
dataset = MILDataset(csv_path, lmdb_dir, k=30, transform=transform)
# env = dataset.env
# image_paths = get_case_imgs(dataset.case_dirs[0])
# selected_paths = random_sample(image_paths, num=dataset.k)
# selected_paths = copy.deepcopy(random_sample(image_paths))
# selected_paths = copy.deepcopy(image_paths[-50:])
# with env.begin(write=False) as txn:
# for selected_path in selected_paths:
# flag = selected_path.split("/")[-2] + "_" + selected_path.split("/")[-1]
# print(flag)
# byteflow = txn.get(flag.encode())
# imgbuf = pa.deserialize(byteflow)
# buf = six.BytesIO()
# buf.write(imgbuf)
# buf.seek(0)
# img = Image.open(buf).convert("RGB")
# dataset = CMILDataset(csv_path, cluster_pl_path, lmdb_dir,
# k=50, transform=transform)
# case_name = os.path.split(dataset.case_dirs[0])[1]
# case_df = dataset.cluster_dict["dfs"][
# dataset.cluster_dict["slide_names"].index(case_name)
# ]
# selected_df = random_sample_cluster(case_df, dataset.k)
# selected_paths = list(selected_df.path)
# env = dataset.env
# with env.begin(write=False) as txn:
# try:
# for selected_path in selected_paths:
# flag = case_name + "_" + selected_path
# print(flag)
# byteflow = txn.get(flag.encode())
# imgbuf = pa.deserialize(byteflow)
# buf = six.BytesIO()
# buf.write(imgbuf)
# buf.seek(0)
# img = Image.open(buf).convert("RGB")
# except TypeError:
# import ipdb;ipdb.set_trace()
loader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=16)
# import ipdb;ipdb.set_trace()
for x in tqdm(dataset):
# # x = x.squeeze()
# # print(x.shape)
continue