-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathunique-number-of-occurrences.py
56 lines (49 loc) · 1.56 KB
/
unique-number-of-occurrences.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# 1207. Unique Number of Occurrences
# 🟢 Easy
#
# https://leetcode.com/problems/unique-number-of-occurrences/
#
# Tags: Array
import timeit
from collections import Counter
from typing import List
# A fast solution is to use Collections.Counter to get the count of
# occurrences of each value, then check if the count of unique values
# equals the total number of values, for example using a set.
#
# Time complexity: O(n)
# Space complexity: O(m) - Where m is the number of unique values in the
# input.
#
# Runtime: 39 ms, faster than 91.14%
# Memory Usage: 14 MB, less than 72.74%
class Solution:
def uniqueOccurrences(self, arr: List[int]) -> bool:
c = Counter(arr)
return len(c) == len(set(c.values()))
def test():
executors = [
Solution,
]
tests = [
[[1, 2, 2, 1, 1, 3], True],
[[1, 2], False],
[[-3, 0, 1, -3, 1, 1, 1, -3, 10, 0], True],
]
for executor in executors:
start = timeit.default_timer()
for _ in range(1):
for col, t in enumerate(tests):
sol = executor()
result = sol.uniqueOccurrences(t[0])
exp = t[1]
assert result == exp, (
f"\033[93m» {result} <> {exp}\033[91m for"
+ f" test {col} using \033[1m{executor.__name__}"
)
stop = timeit.default_timer()
used = str(round(stop - start, 5))
cols = "{0:20}{1:10}{2:10}"
res = cols.format(executor.__name__, used, "seconds")
print(f"\033[92m» {res}\033[0m")
test()