This repository has been archived by the owner on Mar 19, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathfunctions.py
2253 lines (1935 loc) · 84.1 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
"""
functions.py - Miscellaneous functions with no other home
Copyright 2010 Luke Campagnola
Distributed under MIT/X11 license. See license.txt for more infomation.
"""
from __future__ import division
from .python2_3 import asUnicode
from .Qt import QtGui, QtCore, USE_PYSIDE
Colors = {
'b': QtGui.QColor(0,0,255,255),
'g': QtGui.QColor(0,255,0,255),
'r': QtGui.QColor(255,0,0,255),
'c': QtGui.QColor(0,255,255,255),
'm': QtGui.QColor(255,0,255,255),
'y': QtGui.QColor(255,255,0,255),
'k': QtGui.QColor(0,0,0,255),
'w': QtGui.QColor(255,255,255,255),
'd': QtGui.QColor(150,150,150,255),
'l': QtGui.QColor(200,200,200,255),
's': QtGui.QColor(100,100,150,255),
}
SI_PREFIXES = asUnicode('yzafpnµm kMGTPEZY')
SI_PREFIXES_ASCII = 'yzafpnum kMGTPEZY'
from .Qt import QtGui, QtCore, USE_PYSIDE
from . import getConfigOption, setConfigOptions
import numpy as np
import decimal, re
import ctypes
import sys, struct
from . import debug
def siScale(x, minVal=1e-25, allowUnicode=True):
"""
Return the recommended scale factor and SI prefix string for x.
Example::
siScale(0.0001) # returns (1e6, 'μ')
# This indicates that the number 0.0001 is best represented as 0.0001 * 1e6 = 100 μUnits
"""
if isinstance(x, decimal.Decimal):
x = float(x)
try:
if np.isnan(x) or np.isinf(x):
return(1, '')
except:
print(x, type(x))
raise
if abs(x) < minVal:
m = 0
x = 0
else:
m = int(np.clip(np.floor(np.log(abs(x))/np.log(1000)), -9.0, 9.0))
if m == 0:
pref = ''
elif m < -8 or m > 8:
pref = 'e%d' % (m*3)
else:
if allowUnicode:
pref = SI_PREFIXES[m+8]
else:
pref = SI_PREFIXES_ASCII[m+8]
p = .001**m
return (p, pref)
def siFormat(x, precision=3, suffix='', space=True, error=None, minVal=1e-25, allowUnicode=True):
"""
Return the number x formatted in engineering notation with SI prefix.
Example::
siFormat(0.0001, suffix='V') # returns "100 μV"
"""
if space is True:
space = ' '
if space is False:
space = ''
(p, pref) = siScale(x, minVal, allowUnicode)
if not (len(pref) > 0 and pref[0] == 'e'):
pref = space + pref
if error is None:
fmt = "%." + str(precision) + "g%s%s"
return fmt % (x*p, pref, suffix)
else:
if allowUnicode:
plusminus = space + asUnicode("±") + space
else:
plusminus = " +/- "
fmt = "%." + str(precision) + "g%s%s%s%s"
return fmt % (x*p, pref, suffix, plusminus, siFormat(error, precision=precision, suffix=suffix, space=space, minVal=minVal))
def siEval(s):
"""
Convert a value written in SI notation to its equivalent prefixless value
Example::
siEval("100 μV") # returns 0.0001
"""
s = asUnicode(s)
m = re.match(r'(-?((\d+(\.\d*)?)|(\.\d+))([eE]-?\d+)?)\s*([u' + SI_PREFIXES + r']?).*$', s)
if m is None:
raise Exception("Can't convert string '%s' to number." % s)
v = float(m.groups()[0])
p = m.groups()[6]
#if p not in SI_PREFIXES:
#raise Exception("Can't convert string '%s' to number--unknown prefix." % s)
if p == '':
n = 0
elif p == 'u':
n = -2
else:
n = SI_PREFIXES.index(p) - 8
return v * 1000**n
class Color(QtGui.QColor):
def __init__(self, *args):
QtGui.QColor.__init__(self, mkColor(*args))
def glColor(self):
"""Return (r,g,b,a) normalized for use in opengl"""
return (self.red()/255., self.green()/255., self.blue()/255., self.alpha()/255.)
def __getitem__(self, ind):
return (self.red, self.green, self.blue, self.alpha)[ind]()
def mkColor(*args):
"""
Convenience function for constructing QColor from a variety of argument types. Accepted arguments are:
================ ================================================
'c' one of: r, g, b, c, m, y, k, w
R, G, B, [A] integers 0-255
(R, G, B, [A]) tuple of integers 0-255
float greyscale, 0.0-1.0
int see :func:`intColor() <pyqtgraph.intColor>`
(int, hues) see :func:`intColor() <pyqtgraph.intColor>`
"RGB" hexadecimal strings; may begin with '#'
"RGBA"
"RRGGBB"
"RRGGBBAA"
QColor QColor instance; makes a copy.
================ ================================================
"""
err = 'Not sure how to make a color from "%s"' % str(args)
if len(args) == 1:
if isinstance(args[0], basestring):
c = args[0]
if c[0] == '#':
c = c[1:]
if len(c) == 1:
try:
return Colors[c]
except KeyError:
raise Exception('No color named "%s"' % c)
if len(c) == 3:
r = int(c[0]*2, 16)
g = int(c[1]*2, 16)
b = int(c[2]*2, 16)
a = 255
elif len(c) == 4:
r = int(c[0]*2, 16)
g = int(c[1]*2, 16)
b = int(c[2]*2, 16)
a = int(c[3]*2, 16)
elif len(c) == 6:
r = int(c[0:2], 16)
g = int(c[2:4], 16)
b = int(c[4:6], 16)
a = 255
elif len(c) == 8:
r = int(c[0:2], 16)
g = int(c[2:4], 16)
b = int(c[4:6], 16)
a = int(c[6:8], 16)
elif isinstance(args[0], QtGui.QColor):
return QtGui.QColor(args[0])
elif isinstance(args[0], float):
r = g = b = int(args[0] * 255)
a = 255
elif hasattr(args[0], '__len__'):
if len(args[0]) == 3:
(r, g, b) = args[0]
a = 255
elif len(args[0]) == 4:
(r, g, b, a) = args[0]
elif len(args[0]) == 2:
return intColor(*args[0])
else:
raise Exception(err)
elif type(args[0]) == int:
return intColor(args[0])
else:
raise Exception(err)
elif len(args) == 3:
(r, g, b) = args
a = 255
elif len(args) == 4:
(r, g, b, a) = args
else:
raise Exception(err)
args = [r,g,b,a]
args = [0 if np.isnan(a) or np.isinf(a) else a for a in args]
args = list(map(int, args))
return QtGui.QColor(*args)
def mkBrush(*args, **kwds):
"""
| Convenience function for constructing Brush.
| This function always constructs a solid brush and accepts the same arguments as :func:`mkColor() <pyqtgraph.mkColor>`
| Calling mkBrush(None) returns an invisible brush.
"""
if 'color' in kwds:
color = kwds['color']
elif len(args) == 1:
arg = args[0]
if arg is None:
return QtGui.QBrush(QtCore.Qt.NoBrush)
elif isinstance(arg, QtGui.QBrush):
return QtGui.QBrush(arg)
else:
color = arg
elif len(args) > 1:
color = args
return QtGui.QBrush(mkColor(color))
def mkPen(*args, **kargs):
"""
Convenience function for constructing QPen.
Examples::
mkPen(color)
mkPen(color, width=2)
mkPen(cosmetic=False, width=4.5, color='r')
mkPen({'color': "FF0", width: 2})
mkPen(None) # (no pen)
In these examples, *color* may be replaced with any arguments accepted by :func:`mkColor() <pyqtgraph.mkColor>` """
color = kargs.get('color', None)
width = kargs.get('width', 1)
style = kargs.get('style', None)
dash = kargs.get('dash', None)
cosmetic = kargs.get('cosmetic', True)
hsv = kargs.get('hsv', None)
if len(args) == 1:
arg = args[0]
if isinstance(arg, dict):
return mkPen(**arg)
if isinstance(arg, QtGui.QPen):
return QtGui.QPen(arg) ## return a copy of this pen
elif arg is None:
style = QtCore.Qt.NoPen
else:
color = arg
if len(args) > 1:
color = args
if color is None:
color = mkColor('l')
if hsv is not None:
color = hsvColor(*hsv)
else:
color = mkColor(color)
pen = QtGui.QPen(QtGui.QBrush(color), width)
pen.setCosmetic(cosmetic)
if style is not None:
pen.setStyle(style)
if dash is not None:
pen.setDashPattern(dash)
return pen
def hsvColor(hue, sat=1.0, val=1.0, alpha=1.0):
"""Generate a QColor from HSVa values. (all arguments are float 0.0-1.0)"""
c = QtGui.QColor()
c.setHsvF(hue, sat, val, alpha)
return c
def colorTuple(c):
"""Return a tuple (R,G,B,A) from a QColor"""
return (c.red(), c.green(), c.blue(), c.alpha())
def colorStr(c):
"""Generate a hex string code from a QColor"""
return ('%02x'*4) % colorTuple(c)
def intColor(index, hues=9, values=1, maxValue=255, minValue=150, maxHue=360, minHue=0, sat=255, alpha=255, **kargs):
"""
Creates a QColor from a single index. Useful for stepping through a predefined list of colors.
The argument *index* determines which color from the set will be returned. All other arguments determine what the set of predefined colors will be
Colors are chosen by cycling across hues while varying the value (brightness).
By default, this selects from a list of 9 hues."""
hues = int(hues)
values = int(values)
ind = int(index) % (hues * values)
indh = ind % hues
indv = ind / hues
if values > 1:
v = minValue + indv * ((maxValue-minValue) / (values-1))
else:
v = maxValue
h = minHue + (indh * (maxHue-minHue)) / hues
c = QtGui.QColor()
c.setHsv(h, sat, v)
c.setAlpha(alpha)
return c
def glColor(*args, **kargs):
"""
Convert a color to OpenGL color format (r,g,b,a) floats 0.0-1.0
Accepts same arguments as :func:`mkColor <pyqtgraph.mkColor>`.
"""
c = mkColor(*args, **kargs)
return (c.red()/255., c.green()/255., c.blue()/255., c.alpha()/255.)
def makeArrowPath(headLen=20, tipAngle=20, tailLen=20, tailWidth=3, baseAngle=0):
"""
Construct a path outlining an arrow with the given dimensions.
The arrow points in the -x direction with tip positioned at 0,0.
If *tipAngle* is supplied (in degrees), it overrides *headWidth*.
If *tailLen* is None, no tail will be drawn.
"""
headWidth = headLen * np.tan(tipAngle * 0.5 * np.pi/180.)
path = QtGui.QPainterPath()
path.moveTo(0,0)
path.lineTo(headLen, -headWidth)
if tailLen is None:
innerY = headLen - headWidth * np.tan(baseAngle*np.pi/180.)
path.lineTo(innerY, 0)
else:
tailWidth *= 0.5
innerY = headLen - (headWidth-tailWidth) * np.tan(baseAngle*np.pi/180.)
path.lineTo(innerY, -tailWidth)
path.lineTo(headLen + tailLen, -tailWidth)
path.lineTo(headLen + tailLen, tailWidth)
path.lineTo(innerY, tailWidth)
path.lineTo(headLen, headWidth)
path.lineTo(0,0)
return path
def affineSlice(data, shape, origin, vectors, axes, order=1, returnCoords=False, **kargs):
"""
Take a slice of any orientation through an array. This is useful for extracting sections of multi-dimensional arrays such as MRI images for viewing as 1D or 2D data.
The slicing axes are aribtrary; they do not need to be orthogonal to the original data or even to each other. It is possible to use this function to extract arbitrary linear, rectangular, or parallelepiped shapes from within larger datasets. The original data is interpolated onto a new array of coordinates using scipy.ndimage.map_coordinates if it is available (see the scipy documentation for more information about this). If scipy is not available, then a slower implementation of map_coordinates is used.
For a graphical interface to this function, see :func:`ROI.getArrayRegion <pyqtgraph.ROI.getArrayRegion>`
============== ====================================================================================================
**Arguments:**
*data* (ndarray) the original dataset
*shape* the shape of the slice to take (Note the return value may have more dimensions than len(shape))
*origin* the location in the original dataset that will become the origin of the sliced data.
*vectors* list of unit vectors which point in the direction of the slice axes. Each vector must have the same
length as *axes*. If the vectors are not unit length, the result will be scaled relative to the
original data. If the vectors are not orthogonal, the result will be sheared relative to the
original data.
*axes* The axes in the original dataset which correspond to the slice *vectors*
*order* The order of spline interpolation. Default is 1 (linear). See scipy.ndimage.map_coordinates
for more information.
*returnCoords* If True, return a tuple (result, coords) where coords is the array of coordinates used to select
values from the original dataset.
*All extra keyword arguments are passed to scipy.ndimage.map_coordinates.*
--------------------------------------------------------------------------------------------------------------------
============== ====================================================================================================
Note the following must be true:
| len(shape) == len(vectors)
| len(origin) == len(axes) == len(vectors[i])
Example: start with a 4D fMRI data set, take a diagonal-planar slice out of the last 3 axes
* data = array with dims (time, x, y, z) = (100, 40, 40, 40)
* The plane to pull out is perpendicular to the vector (x,y,z) = (1,1,1)
* The origin of the slice will be at (x,y,z) = (40, 0, 0)
* We will slice a 20x20 plane from each timepoint, giving a final shape (100, 20, 20)
The call for this example would look like::
affineSlice(data, shape=(20,20), origin=(40,0,0), vectors=((-1, 1, 0), (-1, 0, 1)), axes=(1,2,3))
"""
try:
import scipy.ndimage
have_scipy = True
except ImportError:
have_scipy = False
have_scipy = False
# sanity check
if len(shape) != len(vectors):
raise Exception("shape and vectors must have same length.")
if len(origin) != len(axes):
raise Exception("origin and axes must have same length.")
for v in vectors:
if len(v) != len(axes):
raise Exception("each vector must be same length as axes.")
shape = list(map(np.ceil, shape))
## transpose data so slice axes come first
trAx = list(range(data.ndim))
for x in axes:
trAx.remove(x)
tr1 = tuple(axes) + tuple(trAx)
data = data.transpose(tr1)
#print "tr1:", tr1
## dims are now [(slice axes), (other axes)]
## make sure vectors are arrays
if not isinstance(vectors, np.ndarray):
vectors = np.array(vectors)
if not isinstance(origin, np.ndarray):
origin = np.array(origin)
origin.shape = (len(axes),) + (1,)*len(shape)
## Build array of sample locations.
grid = np.mgrid[tuple([slice(0,x) for x in shape])] ## mesh grid of indexes
x = (grid[np.newaxis,...] * vectors.transpose()[(Ellipsis,) + (np.newaxis,)*len(shape)]).sum(axis=1) ## magic
x += origin
## iterate manually over unused axes since map_coordinates won't do it for us
if have_scipy:
extraShape = data.shape[len(axes):]
output = np.empty(tuple(shape) + extraShape, dtype=data.dtype)
for inds in np.ndindex(*extraShape):
ind = (Ellipsis,) + inds
output[ind] = scipy.ndimage.map_coordinates(data[ind], x, order=order, **kargs)
else:
# map_coordinates expects the indexes as the first axis, whereas
# interpolateArray expects indexes at the last axis.
tr = tuple(range(1,x.ndim)) + (0,)
output = interpolateArray(data, x.transpose(tr))
tr = list(range(output.ndim))
trb = []
for i in range(min(axes)):
ind = tr1.index(i) + (len(shape)-len(axes))
tr.remove(ind)
trb.append(ind)
tr2 = tuple(trb+tr)
## Untranspose array before returning
output = output.transpose(tr2)
if returnCoords:
return (output, x)
else:
return output
def interpolateArray(data, x, default=0.0):
"""
N-dimensional interpolation similar to scipy.ndimage.map_coordinates.
This function returns linearly-interpolated values sampled from a regular
grid of data.
*data* is an array of any shape containing the values to be interpolated.
*x* is an array with (shape[-1] <= data.ndim) containing the locations
within *data* to interpolate.
Returns array of shape (x.shape[:-1] + data.shape[x.shape[-1]:])
For example, assume we have the following 2D image data::
>>> data = np.array([[1, 2, 4 ],
[10, 20, 40 ],
[100, 200, 400]])
To compute a single interpolated point from this data::
>>> x = np.array([(0.5, 0.5)])
>>> interpolateArray(data, x)
array([ 8.25])
To compute a 1D list of interpolated locations::
>>> x = np.array([(0.5, 0.5),
(1.0, 1.0),
(1.0, 2.0),
(1.5, 0.0)])
>>> interpolateArray(data, x)
array([ 8.25, 20. , 40. , 55. ])
To compute a 2D array of interpolated locations::
>>> x = np.array([[(0.5, 0.5), (1.0, 2.0)],
[(1.0, 1.0), (1.5, 0.0)]])
>>> interpolateArray(data, x)
array([[ 8.25, 40. ],
[ 20. , 55. ]])
..and so on. The *x* argument may have any shape as long as
```x.shape[-1] <= data.ndim```. In the case that
```x.shape[-1] < data.ndim```, then the remaining axes are simply
broadcasted as usual. For example, we can interpolate one location
from an entire row of the data::
>>> x = np.array([[0.5]])
>>> interpolateArray(data, x)
array([[ 5.5, 11. , 22. ]])
This is useful for interpolating from arrays of colors, vertexes, etc.
"""
prof = debug.Profiler()
nd = data.ndim
md = x.shape[-1]
if md > nd:
raise TypeError("x.shape[-1] must be less than or equal to data.ndim")
# First we generate arrays of indexes that are needed to
# extract the data surrounding each point
fields = np.mgrid[(slice(0,2),) * md]
xmin = np.floor(x).astype(int)
xmax = xmin + 1
indexes = np.concatenate([xmin[np.newaxis, ...], xmax[np.newaxis, ...]])
fieldInds = []
totalMask = np.ones(x.shape[:-1], dtype=bool) # keep track of out-of-bound indexes
for ax in range(md):
mask = (xmin[...,ax] >= 0) & (x[...,ax] <= data.shape[ax]-1)
# keep track of points that need to be set to default
totalMask &= mask
# ..and keep track of indexes that are out of bounds
# (note that when x[...,ax] == data.shape[ax], then xmax[...,ax] will be out
# of bounds, but the interpolation will work anyway)
mask &= (xmax[...,ax] < data.shape[ax])
axisIndex = indexes[...,ax][fields[ax]]
axisIndex[axisIndex < 0] = 0
axisIndex[axisIndex >= data.shape[ax]] = 0
fieldInds.append(axisIndex)
prof()
# Get data values surrounding each requested point
fieldData = data[tuple(fieldInds)]
prof()
## Interpolate
s = np.empty((md,) + fieldData.shape, dtype=float)
dx = x - xmin
# reshape fields for arithmetic against dx
for ax in range(md):
f1 = fields[ax].reshape(fields[ax].shape + (1,)*(dx.ndim-1))
sax = f1 * dx[...,ax] + (1-f1) * (1-dx[...,ax])
sax = sax.reshape(sax.shape + (1,) * (s.ndim-1-sax.ndim))
s[ax] = sax
s = np.product(s, axis=0)
result = fieldData * s
for i in range(md):
result = result.sum(axis=0)
prof()
if totalMask.ndim > 0:
result[~totalMask] = default
else:
if totalMask is False:
result[:] = default
prof()
return result
def subArray(data, offset, shape, stride):
"""
Unpack a sub-array from *data* using the specified offset, shape, and stride.
Note that *stride* is specified in array elements, not bytes.
For example, we have a 2x3 array packed in a 1D array as follows::
data = [_, _, 00, 01, 02, _, 10, 11, 12, _]
Then we can unpack the sub-array with this call::
subArray(data, offset=2, shape=(2, 3), stride=(4, 1))
..which returns::
[[00, 01, 02],
[10, 11, 12]]
This function operates only on the first axis of *data*. So changing
the input in the example above to have shape (10, 7) would cause the
output to have shape (2, 3, 7).
"""
#data = data.flatten()
data = data[offset:]
shape = tuple(shape)
stride = tuple(stride)
extraShape = data.shape[1:]
#print data.shape, offset, shape, stride
for i in range(len(shape)):
mask = (slice(None),) * i + (slice(None, shape[i] * stride[i]),)
newShape = shape[:i+1]
if i < len(shape)-1:
newShape += (stride[i],)
newShape += extraShape
#print i, mask, newShape
#print "start:\n", data.shape, data
data = data[mask]
#print "mask:\n", data.shape, data
data = data.reshape(newShape)
#print "reshape:\n", data.shape, data
return data
def transformToArray(tr):
"""
Given a QTransform, return a 3x3 numpy array.
Given a QMatrix4x4, return a 4x4 numpy array.
Example: map an array of x,y coordinates through a transform::
## coordinates to map are (1,5), (2,6), (3,7), and (4,8)
coords = np.array([[1,2,3,4], [5,6,7,8], [1,1,1,1]]) # the extra '1' coordinate is needed for translation to work
## Make an example transform
tr = QtGui.QTransform()
tr.translate(3,4)
tr.scale(2, 0.1)
## convert to array
m = pg.transformToArray()[:2] # ignore the perspective portion of the transformation
## map coordinates through transform
mapped = np.dot(m, coords)
"""
#return np.array([[tr.m11(), tr.m12(), tr.m13()],[tr.m21(), tr.m22(), tr.m23()],[tr.m31(), tr.m32(), tr.m33()]])
## The order of elements given by the method names m11..m33 is misleading--
## It is most common for x,y translation to occupy the positions 1,3 and 2,3 in
## a transformation matrix. However, with QTransform these values appear at m31 and m32.
## So the correct interpretation is transposed:
if isinstance(tr, QtGui.QTransform):
return np.array([[tr.m11(), tr.m21(), tr.m31()], [tr.m12(), tr.m22(), tr.m32()], [tr.m13(), tr.m23(), tr.m33()]])
elif isinstance(tr, QtGui.QMatrix4x4):
return np.array(tr.copyDataTo()).reshape(4,4)
else:
raise Exception("Transform argument must be either QTransform or QMatrix4x4.")
def transformCoordinates(tr, coords, transpose=False):
"""
Map a set of 2D or 3D coordinates through a QTransform or QMatrix4x4.
The shape of coords must be (2,...) or (3,...)
The mapping will _ignore_ any perspective transformations.
For coordinate arrays with ndim=2, this is basically equivalent to matrix multiplication.
Most arrays, however, prefer to put the coordinate axis at the end (eg. shape=(...,3)). To
allow this, use transpose=True.
"""
if transpose:
## move last axis to beginning. This transposition will be reversed before returning the mapped coordinates.
coords = coords.transpose((coords.ndim-1,) + tuple(range(0,coords.ndim-1)))
nd = coords.shape[0]
if isinstance(tr, np.ndarray):
m = tr
else:
m = transformToArray(tr)
m = m[:m.shape[0]-1] # remove perspective
## If coords are 3D and tr is 2D, assume no change for Z axis
if m.shape == (2,3) and nd == 3:
m2 = np.zeros((3,4))
m2[:2, :2] = m[:2,:2]
m2[:2, 3] = m[:2,2]
m2[2,2] = 1
m = m2
## if coords are 2D and tr is 3D, ignore Z axis
if m.shape == (3,4) and nd == 2:
m2 = np.empty((2,3))
m2[:,:2] = m[:2,:2]
m2[:,2] = m[:2,3]
m = m2
## reshape tr and coords to prepare for multiplication
m = m.reshape(m.shape + (1,)*(coords.ndim-1))
coords = coords[np.newaxis, ...]
# separate scale/rotate and translation
translate = m[:,-1]
m = m[:, :-1]
## map coordinates and return
mapped = (m*coords).sum(axis=1) ## apply scale/rotate
mapped += translate
if transpose:
## move first axis to end.
mapped = mapped.transpose(tuple(range(1,mapped.ndim)) + (0,))
return mapped
def solve3DTransform(points1, points2):
"""
Find a 3D transformation matrix that maps points1 onto points2.
Points must be specified as either lists of 4 Vectors or
(4, 3) arrays.
"""
import numpy.linalg
pts = []
for inp in (points1, points2):
if isinstance(inp, np.ndarray):
A = np.empty((4,4), dtype=float)
A[:,:3] = inp[:,:3]
A[:,3] = 1.0
else:
A = np.array([[inp[i].x(), inp[i].y(), inp[i].z(), 1] for i in range(4)])
pts.append(A)
## solve 3 sets of linear equations to determine transformation matrix elements
matrix = np.zeros((4,4))
for i in range(3):
## solve Ax = B; x is one row of the desired transformation matrix
matrix[i] = numpy.linalg.solve(pts[0], pts[1][:,i])
return matrix
def solveBilinearTransform(points1, points2):
"""
Find a bilinear transformation matrix (2x4) that maps points1 onto points2.
Points must be specified as a list of 4 Vector, Point, QPointF, etc.
To use this matrix to map a point [x,y]::
mapped = np.dot(matrix, [x*y, x, y, 1])
"""
import numpy.linalg
## A is 4 rows (points) x 4 columns (xy, x, y, 1)
## B is 4 rows (points) x 2 columns (x, y)
A = np.array([[points1[i].x()*points1[i].y(), points1[i].x(), points1[i].y(), 1] for i in range(4)])
B = np.array([[points2[i].x(), points2[i].y()] for i in range(4)])
## solve 2 sets of linear equations to determine transformation matrix elements
matrix = np.zeros((2,4))
for i in range(2):
matrix[i] = numpy.linalg.solve(A, B[:,i]) ## solve Ax = B; x is one row of the desired transformation matrix
return matrix
def rescaleData(data, scale, offset, dtype=None):
"""Return data rescaled and optionally cast to a new dtype::
data => (data-offset) * scale
Uses scipy.weave (if available) to improve performance.
"""
if dtype is None:
dtype = data.dtype
else:
dtype = np.dtype(dtype)
try:
if not getConfigOption('useWeave'):
raise Exception('Weave is disabled; falling back to slower version.')
try:
import scipy.weave
except ImportError:
raise Exception('scipy.weave is not importable; falling back to slower version.')
## require native dtype when using weave
if not data.dtype.isnative:
data = data.astype(data.dtype.newbyteorder('='))
if not dtype.isnative:
weaveDtype = dtype.newbyteorder('=')
else:
weaveDtype = dtype
newData = np.empty((data.size,), dtype=weaveDtype)
flat = np.ascontiguousarray(data).reshape(data.size)
size = data.size
code = """
double sc = (double)scale;
double off = (double)offset;
for( int i=0; i<size; i++ ) {
newData[i] = ((double)flat[i] - off) * sc;
}
"""
scipy.weave.inline(code, ['flat', 'newData', 'size', 'offset', 'scale'], compiler='gcc')
if dtype != weaveDtype:
newData = newData.astype(dtype)
data = newData.reshape(data.shape)
except:
if getConfigOption('useWeave'):
if getConfigOption('weaveDebug'):
debug.printExc("Error; disabling weave.")
setConfigOptions(useWeave=False)
#p = np.poly1d([scale, -offset*scale])
#data = p(data).astype(dtype)
d2 = data-offset
d2 *= scale
data = d2.astype(dtype)
return data
def applyLookupTable(data, lut):
"""
Uses values in *data* as indexes to select values from *lut*.
The returned data has shape data.shape + lut.shape[1:]
Note: color gradient lookup tables can be generated using GradientWidget.
"""
if data.dtype.kind not in ('i', 'u'):
data = data.astype(int)
return np.take(lut, data, axis=0, mode='clip')
def makeRGBA(*args, **kwds):
"""Equivalent to makeARGB(..., useRGBA=True)"""
kwds['useRGBA'] = True
return makeARGB(*args, **kwds)
def makeARGB(data, lut=None, levels=None, scale=None, useRGBA=False):
"""
Convert an array of values into an ARGB array suitable for building QImages, OpenGL textures, etc.
Returns the ARGB array (values 0-255) and a boolean indicating whether there is alpha channel data.
This is a two stage process:
1) Rescale the data based on the values in the *levels* argument (min, max).
2) Determine the final output by passing the rescaled values through a lookup table.
Both stages are optional.
============== ==================================================================================
**Arguments:**
data numpy array of int/float types. If
levels List [min, max]; optionally rescale data before converting through the
lookup table. The data is rescaled such that min->0 and max->*scale*::
rescaled = (clip(data, min, max) - min) * (*scale* / (max - min))
It is also possible to use a 2D (N,2) array of values for levels. In this case,
it is assumed that each pair of min,max values in the levels array should be
applied to a different subset of the input data (for example, the input data may
already have RGB values and the levels are used to independently scale each
channel). The use of this feature requires that levels.shape[0] == data.shape[-1].
scale The maximum value to which data will be rescaled before being passed through the
lookup table (or returned if there is no lookup table). By default this will
be set to the length of the lookup table, or 256 is no lookup table is provided.
For OpenGL color specifications (as in GLColor4f) use scale=1.0
lut Optional lookup table (array with dtype=ubyte).
Values in data will be converted to color by indexing directly from lut.
The output data shape will be input.shape + lut.shape[1:].
Note: the output of makeARGB will have the same dtype as the lookup table, so
for conversion to QImage, the dtype must be ubyte.
Lookup tables can be built using GradientWidget.
useRGBA If True, the data is returned in RGBA order (useful for building OpenGL textures).
The default is False, which returns in ARGB order for use with QImage
(Note that 'ARGB' is a term used by the Qt documentation; the _actual_ order
is BGRA).
============== ==================================================================================
"""
profile = debug.Profiler()
if lut is not None and not isinstance(lut, np.ndarray):
lut = np.array(lut)
if levels is not None and not isinstance(levels, np.ndarray):
levels = np.array(levels)
if levels is not None:
if levels.ndim == 1:
if len(levels) != 2:
raise Exception('levels argument must have length 2')
elif levels.ndim == 2:
if lut is not None and lut.ndim > 1:
raise Exception('Cannot make ARGB data when bot levels and lut have ndim > 2')
if levels.shape != (data.shape[-1], 2):
raise Exception('levels must have shape (data.shape[-1], 2)')
else:
print(levels)
raise Exception("levels argument must be 1D or 2D.")
profile()
if scale is None:
if lut is not None:
scale = lut.shape[0]
else:
scale = 255.
## Apply levels if given
if levels is not None:
if isinstance(levels, np.ndarray) and levels.ndim == 2:
## we are going to rescale each channel independently
if levels.shape[0] != data.shape[-1]:
raise Exception("When rescaling multi-channel data, there must be the same number of levels as channels (data.shape[-1] == levels.shape[0])")
newData = np.empty(data.shape, dtype=int)
for i in range(data.shape[-1]):
minVal, maxVal = levels[i]
if minVal == maxVal:
maxVal += 1e-16
newData[...,i] = rescaleData(data[...,i], scale/(maxVal-minVal), minVal, dtype=int)
data = newData
else:
minVal, maxVal = levels
if minVal == maxVal:
maxVal += 1e-16
if maxVal == minVal:
data = rescaleData(data, 1, minVal, dtype=int)
else:
data = rescaleData(data, scale/(maxVal-minVal), minVal, dtype=int)
profile()
## apply LUT if given
if lut is not None:
data = applyLookupTable(data, lut)
else:
if data.dtype is not np.ubyte:
data = np.clip(data, 0, 255).astype(np.ubyte)
profile()
## copy data into ARGB ordered array
imgData = np.empty(data.shape[:2]+(4,), dtype=np.ubyte)
profile()
if useRGBA:
order = [0,1,2,3] ## array comes out RGBA
else:
order = [2,1,0,3] ## for some reason, the colors line up as BGR in the final image.
if data.ndim == 2:
# This is tempting:
# imgData[..., :3] = data[..., np.newaxis]
# ..but it turns out this is faster:
for i in range(3):
imgData[..., i] = data
elif data.shape[2] == 1:
for i in range(3):
imgData[..., i] = data[..., 0]
else:
for i in range(0, data.shape[2]):
imgData[..., i] = data[..., order[i]]
profile()
if data.ndim == 2 or data.shape[2] == 3:
alpha = False
imgData[..., 3] = 255
else:
alpha = True
profile()
return imgData, alpha
def makeQImage(imgData, alpha=None, copy=True, transpose=True):
"""
Turn an ARGB array into QImage.
By default, the data is copied; changes to the array will not
be reflected in the image. The image will be given a 'data' attribute
pointing to the array which shares its data to prevent python
freeing that memory while the image is in use.
============== ===================================================================
**Arguments:**