-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
129 lines (112 loc) · 5.13 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from vit.model import ViT, ViTBase, ViTHuge, ViTLarge
from tensorflow import keras
from tensorflow.keras.losses import SparseCategoricalCrossentropy
from tensorflow.keras.preprocessing import image_dataset_from_directory
from tensorflow.python.data import Dataset
import tensorflow_addons as tfa
import numpy as np
from argparse import ArgumentParser
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument('--model', default='custom', type=str,
help='Type of ViT model, valid option: custom, base, large, huge')
parser.add_argument('--num-classes', default=10,
type=int, help='Number of classes')
parser.add_argument('--patch-size', default=2,
type=int, help='Size of image patch')
parser.add_argument('--num-heads', default=4,
type=int, help='Number of attention heads')
parser.add_argument('--att-size', default=64,
type=int, help='Size of each attention head for value')
parser.add_argument('--num-layer', default=2,
type=int, help='Number of attention layer')
parser.add_argument('--mlp-size', default=128,
type=int, help='Size of hidden layer in MLP block')
parser.add_argument('--lr', default=0.001,
type=float, help='Learning rate')
parser.add_argument('--weight-decay', default=1e-4,
type=float, help='Weight decay')
parser.add_argument('--batch-size', default=32, type=int,
help='Batch size')
parser.add_argument('--epochs', default=10, type=int,
help='Number of training epoch')
parser.add_argument('--image-size', default=224,
type=int, help='Size of input image')
parser.add_argument('--image-channels', default=3,
type=int, help='Number channel of input image')
parser.add_argument('--train-folder', default='', type=str,
help='Where training data is located')
parser.add_argument('--valid-folder', default='', type=str,
help='Where validation data is located')
parser.add_argument('--model-folder', default='.output/',
type=str, help='Folder to save trained model')
args = parser.parse_args()
print('---------------------Welcome to ProtonX MLP Mixer-------------------')
print('Github: bangoc123 and tiena2cva')
print('Email: [email protected]')
print('---------------------------------------------------------------------')
print('Training Vit Transformer model with hyper-params:')
print('===========================')
for i, arg in enumerate(vars(args)):
print('{}.{}: {}'.format(i, arg, vars(args)[arg]))
print('===========================')
if args.train_folder != '' and args.valid_folder != '':
# Load train images from folder
train_ds = image_dataset_from_directory(
args.train_folder,
seed=123,
image_size=(args.image_size, args.image_size),
shuffle=True,
batch_size=args.batch_size,
)
val_ds = image_dataset_from_directory(
args.valid_folder,
seed=123,
image_size=(args.image_size, args.image_size),
shuffle=True,
batch_size=args.batch_size,
)
else:
print("Data folder is not set. Use CIFAR 10 dataset")
args.image_channels = 3
args.num_classes = 10
(x_train, y_train), (x_val, y_val) = keras.datasets.cifar10.load_data()
x_train = (x_train.reshape(-1, args.image_size, args.image_size,
args.image_channels)).astype(np.float32)
x_val = (x_val.reshape(-1, args.image_size, args.image_size,
args.image_channels)).astype(np.float32)
# create dataset
train_ds = Dataset.from_tensor_slices((x_train, y_train))
train_ds = train_ds.batch(args.batch_size)
val_ds = Dataset.from_tensor_slices((x_val, y_val))
val_ds = val_ds.batch(args.batch_size)
if args.model == 'base':
model = ViTBase()
elif args.model == 'large':
model = ViTLarge()
elif args.model == 'huge':
model = ViTHuge()
else:
model = ViT(
num_classes=args.num_classes,
patch_size=args.patch_size,
image_size=args.image_size,
num_heads=args.num_heads,
D=args.att_size,
mlp_dim=args.mlp_size,
num_layers=args.num_layer
)
model.build(input_shape=(None, args.image_size,
args.image_size, args.image_channels))
optimizer = tfa.optimizers.AdamW(
learning_rate=args.lr, weight_decay=args.weight_decay)
loss = SparseCategoricalCrossentropy()
model.compile(optimizer, loss=loss,
metrics=['accuracy'])
# Traning
model.fit(train_ds,
epochs=args.epochs,
batch_size=args.batch_size,
validation_data=val_ds)
# Save model
model.save(args.model_folder)