forked from botprof/agv-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiffdrive_kinematic.py
162 lines (131 loc) · 3.9 KB
/
diffdrive_kinematic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
"""
Example diffdrive_kinematic.py
Author: Joshua A. Marshall <[email protected]>
GitHub: https://github.com/botprof/agv-examples
"""
# %%
# SIMULATION SETUP
import numpy as np
import matplotlib.pyplot as plt
from mobotpy.models import DiffDrive
# Set the simulation time [s] and the sample period [s]
SIM_TIME = 30.0
T = 0.04
# Create an array of time values [s]
t = np.arange(0.0, SIM_TIME, T)
N = np.size(t)
# Set the track of the vehicle [m]
ELL = 0.35
# %%
# FUNCTION DEFINITIONS
def rk_four(f, x, u, T):
"""Fourth-order Runge-Kutta numerical integration."""
k_1 = f(x, u)
k_2 = f(x + T * k_1 / 2.0, u)
k_3 = f(x + T * k_2 / 2.0, u)
k_4 = f(x + T * k_3, u)
x_new = x + T / 6.0 * (k_1 + 2.0 * k_2 + 2.0 * k_3 + k_4)
return x_new
def diffdrive_f(x, u):
"""Differential drive kinematic vehicle model."""
f = np.zeros(3)
f[0] = 0.5 * (u[0] + u[1]) * np.cos(x[2])
f[1] = 0.5 * (u[0] + u[1]) * np.sin(x[2])
f[2] = 1.0 / ELL * (u[1] - u[0])
return f
def uni2diff(u):
"""Convert speed and angular rate to wheel speeds."""
v = u[0]
omega = u[1]
v_L = v - ELL / 2 * omega
v_R = v + ELL / 2 * omega
return np.array([v_L, v_R])
def openloop(t):
"""Specify open loop speed and angular rate inputs."""
v = 0.5
omega = 0.5 * np.sin(10 * t * np.pi / 180.0)
return np.array([v, omega])
# %%
# RUN SIMULATION
# Initialize arrays that will be populated with our inputs and states
x = np.zeros((3, N))
u = np.zeros((2, N))
# Set the initial pose [m, m, rad], velocities [m/s, m/s]
x[0, 0] = 0.0
x[1, 0] = 0.0
x[2, 0] = np.pi / 2.0
u[:, 0] = uni2diff(openloop(t[0]))
# Run the simulation
for k in range(1, N):
x[:, k] = rk_four(diffdrive_f, x[:, k - 1], u[:, k - 1], T)
u[:, k] = uni2diff(openloop(t[k]))
# %%
# MAKE PLOTS
# Change some plot settings (optional)
plt.rc("text", usetex=True)
plt.rc("text.latex", preamble=r"\usepackage{cmbright,amsmath,bm}")
plt.rc("savefig", format="pdf")
plt.rc("savefig", bbox="tight")
# Plot the states as a function of time
fig1 = plt.figure(1)
fig1.set_figheight(6.4)
ax1a = plt.subplot(411)
plt.plot(t, x[0, :])
plt.grid(color="0.95")
plt.ylabel(r"$x$ [m]")
plt.setp(ax1a, xticklabels=[])
ax1b = plt.subplot(412)
plt.plot(t, x[1, :])
plt.grid(color="0.95")
plt.ylabel(r"$y$ [m]")
plt.setp(ax1b, xticklabels=[])
ax1c = plt.subplot(413)
plt.plot(t, x[2, :] * 180.0 / np.pi)
plt.grid(color="0.95")
plt.ylabel(r"$\theta$ [deg]")
plt.setp(ax1c, xticklabels=[])
ax1d = plt.subplot(414)
plt.step(t, u[0, :], "C1", where="post", label="$v_L$")
plt.step(t, u[1, :], "C2", where="post", label="$v_R$")
plt.grid(color="0.95")
plt.ylabel(r"$\bm{u}$ [m/s]")
plt.xlabel(r"$t$ [s]")
plt.legend()
# Save the plot
plt.savefig("../agv-book/figs/ch3/diffdrive_kinematic_fig1.pdf")
# Let's now use the class DiffDrive for plotting
vehicle = DiffDrive(ELL)
# Plot the position of the vehicle in the plane
fig2 = plt.figure(2)
plt.plot(x[0, :], x[1, :], "C0")
plt.axis("equal")
X_L, Y_L, X_R, Y_R, X_B, Y_B, X_C, Y_C = vehicle.draw(x[0, 0], x[1, 0], x[2, 0])
plt.fill(X_L, Y_L, "k")
plt.fill(X_R, Y_R, "k")
plt.fill(X_C, Y_C, "k")
plt.fill(X_B, Y_B, "C2", alpha=0.5, label="Start")
X_L, Y_L, X_R, Y_R, X_B, Y_B, X_C, Y_C = vehicle.draw(
x[0, N - 1], x[1, N - 1], x[2, N - 1]
)
plt.fill(X_L, Y_L, "k")
plt.fill(X_R, Y_R, "k")
plt.fill(X_C, Y_C, "k")
plt.fill(X_B, Y_B, "C3", alpha=0.5, label="End")
plt.xlabel(r"$x$ [m]")
plt.ylabel(r"$y$ [m]")
plt.legend()
# Save the plot
plt.savefig("../agv-book/figs/ch3/diffdrive_kinematic_fig2.pdf")
# Show all the plots to the screen
plt.show()
# %%
# MAKE AN ANIMATION
# Create and save the animation
ani = vehicle.animate(x, T, True, "../agv-book/gifs/ch3/diffdrive_kinematic.gif")
# Show the movie to the screen
plt.show()
# # Show animation in HTML output if you are using IPython or Jupyter notebooks
# from IPython.display import display
# plt.rc('animation', html='jshtml')
# display(ani)
# plt.close()