diff --git a/LICENSE b/LICENSE new file mode 100644 index 0000000..14d0651 --- /dev/null +++ b/LICENSE @@ -0,0 +1,21 @@ +MIT License + +Copyright (c) 2021 Princeton Vision & Learning Lab + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/RAFTStereo.png b/RAFTStereo.png new file mode 100644 index 0000000..c382617 Binary files /dev/null and b/RAFTStereo.png differ diff --git a/README.md b/README.md new file mode 100644 index 0000000..9a5c864 --- /dev/null +++ b/README.md @@ -0,0 +1,113 @@ +# RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching +This repository contains the source code for our paper: + +[RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching](https://www.google.com)
+Lahav Lipson, Zachary Teed and Jia Deng
+ + + +## Requirements +The code has been tested with PyTorch 1.7 and Cuda 10.2. +```Shell +conda env create -f environment.yaml +conda activate raftstereo +``` + + + + +## Required Data +To evaluate/train RAFT, you will need to download the required datasets. +* [Sceneflow](https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html#:~:text=on%20Academic%20Torrents-,FlyingThings3D,-Driving) (Includes FlyingThings3D, Driving & Monkaa +* [Middlebury](https://vision.middlebury.edu/stereo/data/) +* [ETH3D](https://www.eth3d.net/datasets#low-res-two-view-test-data) +* [KITTI](http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo) + +To download the ETH3D and Middlebury test datasets for the [demos](#demos), run +```Shell +chmod ug+x download_datasets.sh && ./download_datasets.sh +``` + +By default `stereo_datasets.py` will search for the datasets in these locations. You can create symbolic links to wherever the datasets were downloaded in the `datasets` folder + +```Shell +├── datasets + ├── FlyingThings3D + ├── frames_cleanpass + ├── frames_finalpass + ├── disparity + ├── Monkaa + ├── frames_cleanpass + ├── frames_finalpass + ├── disparity + ├── Driving + ├── frames_cleanpass + ├── frames_finalpass + ├── disparity + ├── KITTI + ├── testing + ├── training + ├── devkit + ├── Middlebury + ├── MiddEval3 + ├── ETH3D + ├── lakeside_1l + ├── ... + ├── tunnel_3s +``` + +## Demos +Pretrained models can be downloaded by running +```Shell +chmod ug+x download_models.sh && ./download_models.sh +``` +or downloaded from [google drive](https://drive.google.com/drive/folders/1booUFYEXmsdombVuglatP0nZXb5qI89J) + +You can demo a trained model on pairs of images. To predict stereo for Middlebury, run +```Shell +python demo.py --restore_ckpt models/raftstereo-sceneflow.pth +``` +Or for ETH3D: +```Shell +python demo.py --restore_ckpt models/raftstereo-eth3d.pth -l=datasets/ETH3D/*/im0.png -r=datasets/ETH3D/*/im1.png +``` +Using our fastest model: +```Shell +python demo.py --restore_ckpt models/raftstereo-realtime.pth --shared_backbone --n_downsample 3 --n_gru_layers 2 --slow_fast_gru +``` + +To save the disparity values as `.npy` files, run any of the demos with the `--save_numpy` flag. + +## Converting Disparity to Depth + +If the camera focal length and camera baseline are known, disparity predictions can be converted to depth values using + + + +Note that the units of the focal length are _pixels_ not millimeters. + +## Evaluation + +To evaluate a trained model on a validation set (e.g. Middlebury), run +```Shell +python evaluate_stereo.py --restore_ckpt models/raftstereo-middlebury.pth --dataset middlebury_H +``` + +## Training + +Our model is trained on two RTX-6000 GPUs using the following command. Training logs will be written to `runs/` which can be visualized using tensorboard. + +```Shell +python train_stereo.py --batch_size 8 --train_iters 22 --valid_iters 32 --spatial_scale -0.2 0.4 --saturation_range 0 1.4 --n_downsample 2 --num_steps 200000 --mixed_precision +``` +To train using significantly less memory, change `--n_downsample 2` to `--n_downsample 3`. This will slightly reduce accuracy. + +## (Optional) Faster Implementation + +We provide a faster CUDA implementation of the correlation volume which works with mixed precision feature maps. +```Shell +cd sampler && python setup.py install && cd .. +``` +Running demo.py, train_stereo.py or evaluate.py with `--corr_implementation reg_cuda` together with `--mixed_precision` will speed up the model without impacting performance. + +To significantly decrease memory consumption on high resolution images, use `--corr_implementation alt`. This implementation is slower than the default, however. diff --git a/core/__init__.py b/core/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/core/corr.py b/core/corr.py new file mode 100644 index 0000000..4ac5d2e --- /dev/null +++ b/core/corr.py @@ -0,0 +1,188 @@ +import torch +import torch.nn.functional as F +from core.utils.utils import bilinear_sampler + +try: + import corr_sampler +except: + pass + +try: + import alt_cuda_corr +except: + # alt_cuda_corr is not compiled + pass + + +class CorrSampler(torch.autograd.Function): + @staticmethod + def forward(ctx, volume, coords, radius): + ctx.save_for_backward(volume,coords) + ctx.radius = radius + corr, = corr_sampler.forward(volume, coords, radius) + return corr + @staticmethod + def backward(ctx, grad_output): + volume, coords = ctx.saved_tensors + grad_output = grad_output.contiguous() + grad_volume, = corr_sampler.backward(volume, coords, grad_output, ctx.radius) + return grad_volume, None, None + +class CorrBlockFast1D: + def __init__(self, fmap1, fmap2, num_levels=4, radius=4): + self.num_levels = num_levels + self.radius = radius + self.corr_pyramid = [] + # all pairs correlation + corr = CorrBlockFast1D.corr(fmap1, fmap2) + batch, h1, w1, dim, w2 = corr.shape + corr = corr.reshape(batch*h1*w1, dim, 1, w2) + for i in range(self.num_levels): + self.corr_pyramid.append(corr.view(batch, h1, w1, -1, w2//2**i)) + corr = F.avg_pool2d(corr, [1,2], stride=[1,2]) + + def __call__(self, coords): + out_pyramid = [] + bz, _, ht, wd = coords.shape + coords = coords[:, [0]] + for i in range(self.num_levels): + corr = CorrSampler.apply(self.corr_pyramid[i].squeeze(3), coords/2**i, self.radius) + out_pyramid.append(corr.view(bz, -1, ht, wd)) + return torch.cat(out_pyramid, dim=1) + + @staticmethod + def corr(fmap1, fmap2): + B, D, H, W1 = fmap1.shape + _, _, _, W2 = fmap2.shape + fmap1 = fmap1.view(B, D, H, W1) + fmap2 = fmap2.view(B, D, H, W2) + corr = torch.einsum('aijk,aijh->ajkh', fmap1, fmap2) + corr = corr.reshape(B, H, W1, 1, W2).contiguous() + return corr / torch.sqrt(torch.tensor(D).float()) + + +class PytorchAlternateCorrBlock1D: + def __init__(self, fmap1, fmap2, num_levels=4, radius=4): + self.num_levels = num_levels + self.radius = radius + self.corr_pyramid = [] + self.fmap1 = fmap1 + self.fmap2 = fmap2 + + def corr(self, fmap1, fmap2, coords): + B, D, H, W = fmap2.shape + # map grid coordinates to [-1,1] + xgrid, ygrid = coords.split([1,1], dim=-1) + xgrid = 2*xgrid/(W-1) - 1 + ygrid = 2*ygrid/(H-1) - 1 + + grid = torch.cat([xgrid, ygrid], dim=-1) + output_corr = [] + for grid_slice in grid.unbind(3): + fmapw_mini = F.grid_sample(fmap2, grid_slice, align_corners=True) + corr = torch.sum(fmapw_mini * fmap1, dim=1) + output_corr.append(corr) + corr = torch.stack(output_corr, dim=1).permute(0,2,3,1) + + return corr / torch.sqrt(torch.tensor(D).float()) + + def __call__(self, coords): + r = self.radius + coords = coords.permute(0, 2, 3, 1) + batch, h1, w1, _ = coords.shape + fmap1 = self.fmap1 + fmap2 = self.fmap2 + out_pyramid = [] + for i in range(self.num_levels): + dx = torch.zeros(1) + dy = torch.linspace(-r, r, 2*r+1) + delta = torch.stack(torch.meshgrid(dy, dx), axis=-1).to(coords.device) + centroid_lvl = coords.reshape(batch, h1, w1, 1, 2).clone() + centroid_lvl[...,0] = centroid_lvl[...,0] / 2**i + coords_lvl = centroid_lvl + delta.view(-1, 2) + corr = self.corr(fmap1, fmap2, coords_lvl) + fmap2 = F.avg_pool2d(fmap2, [1, 2], stride=[1, 2]) + out_pyramid.append(corr) + out = torch.cat(out_pyramid, dim=-1) + return out.permute(0, 3, 1, 2).contiguous().float() + + +class CorrBlock1D: + def __init__(self, fmap1, fmap2, num_levels=4, radius=4): + self.num_levels = num_levels + self.radius = radius + self.corr_pyramid = [] + + # all pairs correlation + corr = CorrBlock1D.corr(fmap1, fmap2) + + batch, h1, w1, dim, w2 = corr.shape + corr = corr.reshape(batch*h1*w1, dim, 1, w2) + + self.corr_pyramid.append(corr) + for i in range(self.num_levels): + corr = F.avg_pool2d(corr, [1,2], stride=[1,2]) + self.corr_pyramid.append(corr) + + def __call__(self, coords): + r = self.radius + coords = coords[:, :1].permute(0, 2, 3, 1) + batch, h1, w1, _ = coords.shape + + out_pyramid = [] + for i in range(self.num_levels): + corr = self.corr_pyramid[i] + dx = torch.linspace(-r, r, 2*r+1) + dx = dx.view(1, 1, 2*r+1, 1).to(coords.device) + x0 = dx + coords.reshape(batch*h1*w1, 1, 1, 1) / 2**i + y0 = torch.zeros_like(x0) + + coords_lvl = torch.cat([x0,y0], dim=-1) + corr = bilinear_sampler(corr, coords_lvl) + corr = corr.view(batch, h1, w1, -1) + out_pyramid.append(corr) + + out = torch.cat(out_pyramid, dim=-1) + return out.permute(0, 3, 1, 2).contiguous().float() + + @staticmethod + def corr(fmap1, fmap2): + B, D, H, W1 = fmap1.shape + _, _, _, W2 = fmap2.shape + fmap1 = fmap1.view(B, D, H, W1) + fmap2 = fmap2.view(B, D, H, W2) + corr = torch.einsum('aijk,aijh->ajkh', fmap1, fmap2) + corr = corr.reshape(B, H, W1, 1, W2).contiguous() + return corr / torch.sqrt(torch.tensor(D).float()) + + +class AlternateCorrBlock: + def __init__(self, fmap1, fmap2, num_levels=4, radius=4): + raise NotImplementedError + self.num_levels = num_levels + self.radius = radius + + self.pyramid = [(fmap1, fmap2)] + for i in range(self.num_levels): + fmap1 = F.avg_pool2d(fmap1, 2, stride=2) + fmap2 = F.avg_pool2d(fmap2, 2, stride=2) + self.pyramid.append((fmap1, fmap2)) + + def __call__(self, coords): + coords = coords.permute(0, 2, 3, 1) + B, H, W, _ = coords.shape + dim = self.pyramid[0][0].shape[1] + + corr_list = [] + for i in range(self.num_levels): + r = self.radius + fmap1_i = self.pyramid[0][0].permute(0, 2, 3, 1).contiguous() + fmap2_i = self.pyramid[i][1].permute(0, 2, 3, 1).contiguous() + + coords_i = (coords / 2**i).reshape(B, 1, H, W, 2).contiguous() + corr, = alt_cuda_corr.forward(fmap1_i, fmap2_i, coords_i, r) + corr_list.append(corr.squeeze(1)) + + corr = torch.stack(corr_list, dim=1) + corr = corr.reshape(B, -1, H, W) + return corr / torch.sqrt(torch.tensor(dim).float()) diff --git a/core/extractor.py b/core/extractor.py new file mode 100644 index 0000000..edd71e2 --- /dev/null +++ b/core/extractor.py @@ -0,0 +1,300 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F + + +class ResidualBlock(nn.Module): + def __init__(self, in_planes, planes, norm_fn='group', stride=1): + super(ResidualBlock, self).__init__() + + self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, padding=1, stride=stride) + self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1) + self.relu = nn.ReLU(inplace=True) + + num_groups = planes // 8 + + if norm_fn == 'group': + self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) + self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) + if not (stride == 1 and in_planes == planes): + self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) + + elif norm_fn == 'batch': + self.norm1 = nn.BatchNorm2d(planes) + self.norm2 = nn.BatchNorm2d(planes) + if not (stride == 1 and in_planes == planes): + self.norm3 = nn.BatchNorm2d(planes) + + elif norm_fn == 'instance': + self.norm1 = nn.InstanceNorm2d(planes) + self.norm2 = nn.InstanceNorm2d(planes) + if not (stride == 1 and in_planes == planes): + self.norm3 = nn.InstanceNorm2d(planes) + + elif norm_fn == 'none': + self.norm1 = nn.Sequential() + self.norm2 = nn.Sequential() + if not (stride == 1 and in_planes == planes): + self.norm3 = nn.Sequential() + + if stride == 1 and in_planes == planes: + self.downsample = None + + else: + self.downsample = nn.Sequential( + nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3) + + + def forward(self, x): + y = x + y = self.conv1(y) + y = self.norm1(y) + y = self.relu(y) + y = self.conv2(y) + y = self.norm2(y) + y = self.relu(y) + + if self.downsample is not None: + x = self.downsample(x) + + return self.relu(x+y) + + + +class BottleneckBlock(nn.Module): + def __init__(self, in_planes, planes, norm_fn='group', stride=1): + super(BottleneckBlock, self).__init__() + + self.conv1 = nn.Conv2d(in_planes, planes//4, kernel_size=1, padding=0) + self.conv2 = nn.Conv2d(planes//4, planes//4, kernel_size=3, padding=1, stride=stride) + self.conv3 = nn.Conv2d(planes//4, planes, kernel_size=1, padding=0) + self.relu = nn.ReLU(inplace=True) + + num_groups = planes // 8 + + if norm_fn == 'group': + self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes//4) + self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes//4) + self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) + if not stride == 1: + self.norm4 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) + + elif norm_fn == 'batch': + self.norm1 = nn.BatchNorm2d(planes//4) + self.norm2 = nn.BatchNorm2d(planes//4) + self.norm3 = nn.BatchNorm2d(planes) + if not stride == 1: + self.norm4 = nn.BatchNorm2d(planes) + + elif norm_fn == 'instance': + self.norm1 = nn.InstanceNorm2d(planes//4) + self.norm2 = nn.InstanceNorm2d(planes//4) + self.norm3 = nn.InstanceNorm2d(planes) + if not stride == 1: + self.norm4 = nn.InstanceNorm2d(planes) + + elif norm_fn == 'none': + self.norm1 = nn.Sequential() + self.norm2 = nn.Sequential() + self.norm3 = nn.Sequential() + if not stride == 1: + self.norm4 = nn.Sequential() + + if stride == 1: + self.downsample = None + + else: + self.downsample = nn.Sequential( + nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm4) + + + def forward(self, x): + y = x + y = self.relu(self.norm1(self.conv1(y))) + y = self.relu(self.norm2(self.conv2(y))) + y = self.relu(self.norm3(self.conv3(y))) + + if self.downsample is not None: + x = self.downsample(x) + + return self.relu(x+y) + +class BasicEncoder(nn.Module): + def __init__(self, output_dim=128, norm_fn='batch', dropout=0.0, downsample=3): + super(BasicEncoder, self).__init__() + self.norm_fn = norm_fn + self.downsample = downsample + + if self.norm_fn == 'group': + self.norm1 = nn.GroupNorm(num_groups=8, num_channels=64) + + elif self.norm_fn == 'batch': + self.norm1 = nn.BatchNorm2d(64) + + elif self.norm_fn == 'instance': + self.norm1 = nn.InstanceNorm2d(64) + + elif self.norm_fn == 'none': + self.norm1 = nn.Sequential() + + self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=1 + (downsample > 2), padding=3) + self.relu1 = nn.ReLU(inplace=True) + + self.in_planes = 64 + self.layer1 = self._make_layer(64, stride=1) + self.layer2 = self._make_layer(96, stride=1 + (downsample > 1)) + self.layer3 = self._make_layer(128, stride=1 + (downsample > 0)) + + # output convolution + self.conv2 = nn.Conv2d(128, output_dim, kernel_size=1) + + self.dropout = None + if dropout > 0: + self.dropout = nn.Dropout2d(p=dropout) + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)): + if m.weight is not None: + nn.init.constant_(m.weight, 1) + if m.bias is not None: + nn.init.constant_(m.bias, 0) + + def _make_layer(self, dim, stride=1): + layer1 = ResidualBlock(self.in_planes, dim, self.norm_fn, stride=stride) + layer2 = ResidualBlock(dim, dim, self.norm_fn, stride=1) + layers = (layer1, layer2) + + self.in_planes = dim + return nn.Sequential(*layers) + + + def forward(self, x, dual_inp=False): + + # if input is list, combine batch dimension + is_list = isinstance(x, tuple) or isinstance(x, list) + if is_list: + batch_dim = x[0].shape[0] + x = torch.cat(x, dim=0) + + x = self.conv1(x) + x = self.norm1(x) + x = self.relu1(x) + + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + + x = self.conv2(x) + + if self.training and self.dropout is not None: + x = self.dropout(x) + + if is_list: + x = x.split(split_size=batch_dim, dim=0) + + return x + +class MultiBasicEncoder(nn.Module): + def __init__(self, output_dim=[128], norm_fn='batch', dropout=0.0, downsample=3): + super(MultiBasicEncoder, self).__init__() + self.norm_fn = norm_fn + self.downsample = downsample + + if self.norm_fn == 'group': + self.norm1 = nn.GroupNorm(num_groups=8, num_channels=64) + + elif self.norm_fn == 'batch': + self.norm1 = nn.BatchNorm2d(64) + + elif self.norm_fn == 'instance': + self.norm1 = nn.InstanceNorm2d(64) + + elif self.norm_fn == 'none': + self.norm1 = nn.Sequential() + + self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=1 + (downsample > 2), padding=3) + self.relu1 = nn.ReLU(inplace=True) + + self.in_planes = 64 + self.layer1 = self._make_layer(64, stride=1) + self.layer2 = self._make_layer(96, stride=1 + (downsample > 1)) + self.layer3 = self._make_layer(128, stride=1 + (downsample > 0)) + self.layer4 = self._make_layer(128, stride=2) + self.layer5 = self._make_layer(128, stride=2) + + output_list = [] + for dim in output_dim: + conv_out = nn.Sequential( + ResidualBlock(128, 128, self.norm_fn, stride=1), + nn.Conv2d(128, dim[2], 3, padding=1)) + output_list.append(conv_out) + + self.outputs08 = nn.ModuleList(output_list) + + output_list = [] + for dim in output_dim: + conv_out = nn.Sequential( + ResidualBlock(128, 128, self.norm_fn, stride=1), + nn.Conv2d(128, dim[1], 3, padding=1)) + output_list.append(conv_out) + + self.outputs16 = nn.ModuleList(output_list) + + output_list = [] + for dim in output_dim: + conv_out = nn.Conv2d(128, dim[0], 3, padding=1) + output_list.append(conv_out) + + self.outputs32 = nn.ModuleList(output_list) + + if dropout > 0: + self.dropout = nn.Dropout2d(p=dropout) + else: + self.dropout = None + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)): + if m.weight is not None: + nn.init.constant_(m.weight, 1) + if m.bias is not None: + nn.init.constant_(m.bias, 0) + + def _make_layer(self, dim, stride=1): + layer1 = ResidualBlock(self.in_planes, dim, self.norm_fn, stride=stride) + layer2 = ResidualBlock(dim, dim, self.norm_fn, stride=1) + layers = (layer1, layer2) + + self.in_planes = dim + return nn.Sequential(*layers) + + def forward(self, x, dual_inp=False, num_layers=3): + + x = self.conv1(x) + x = self.norm1(x) + x = self.relu1(x) + + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + if dual_inp: + v = x + x = x[:(x.shape[0]//2)] + + outputs08 = [f(x) for f in self.outputs08] + if num_layers == 1: + return (outputs08, v) if dual_inp else (outputs08,) + + y = self.layer4(x) + outputs16 = [f(y) for f in self.outputs16] + + if num_layers == 2: + return (outputs08, outputs16, v) if dual_inp else (outputs08, outputs16) + + z = self.layer5(y) + outputs32 = [f(z) for f in self.outputs32] + + return (outputs08, outputs16, outputs32, v) if dual_inp else (outputs08, outputs16, outputs32) diff --git a/core/raft_stereo.py b/core/raft_stereo.py new file mode 100644 index 0000000..5f796cc --- /dev/null +++ b/core/raft_stereo.py @@ -0,0 +1,141 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from core.update import BasicMultiUpdateBlock +from core.extractor import BasicEncoder, MultiBasicEncoder, ResidualBlock +from core.corr import CorrBlock1D, PytorchAlternateCorrBlock1D, CorrBlockFast1D, AlternateCorrBlock +from core.utils.utils import coords_grid, upflow8 + + +try: + autocast = torch.cuda.amp.autocast +except: + # dummy autocast for PyTorch < 1.6 + class autocast: + def __init__(self, enabled): + pass + def __enter__(self): + pass + def __exit__(self, *args): + pass + +class RAFTStereo(nn.Module): + def __init__(self, args): + super().__init__() + self.args = args + + context_dims = args.hidden_dims + + self.cnet = MultiBasicEncoder(output_dim=[args.hidden_dims, context_dims], norm_fn="batch", downsample=args.n_downsample) + self.update_block = BasicMultiUpdateBlock(self.args, hidden_dims=args.hidden_dims) + + self.context_zqr_convs = nn.ModuleList([nn.Conv2d(context_dims[i], args.hidden_dims[i]*3, 3, padding=3//2) for i in range(self.args.n_gru_layers)]) + + if args.shared_backbone: + self.conv2 = nn.Sequential( + ResidualBlock(128, 128, 'instance', stride=1), + nn.Conv2d(128, 256, 3, padding=1)) + else: + self.fnet = BasicEncoder(output_dim=256, norm_fn='instance', downsample=args.n_downsample) + + def freeze_bn(self): + for m in self.modules(): + if isinstance(m, nn.BatchNorm2d): + m.eval() + + def initialize_flow(self, img): + """ Flow is represented as difference between two coordinate grids flow = coords1 - coords0""" + N, _, H, W = img.shape + + coords0 = coords_grid(N, H, W).to(img.device) + coords1 = coords_grid(N, H, W).to(img.device) + + return coords0, coords1 + + def upsample_flow(self, flow, mask): + """ Upsample flow field [H/8, W/8, 2] -> [H, W, 2] using convex combination """ + N, D, H, W = flow.shape + factor = 2 ** self.args.n_downsample + mask = mask.view(N, 1, 9, factor, factor, H, W) + mask = torch.softmax(mask, dim=2) + + up_flow = F.unfold(factor * flow, [3,3], padding=1) + up_flow = up_flow.view(N, D, 9, 1, 1, H, W) + + up_flow = torch.sum(mask * up_flow, dim=2) + up_flow = up_flow.permute(0, 1, 4, 2, 5, 3) + return up_flow.reshape(N, D, factor*H, factor*W) + + + def forward(self, image1, image2, iters=12, flow_init=None, test_mode=False): + """ Estimate optical flow between pair of frames """ + + image1 = (2 * (image1 / 255.0) - 1.0).contiguous() + image2 = (2 * (image2 / 255.0) - 1.0).contiguous() + + # run the context network + with autocast(enabled=self.args.mixed_precision): + if self.args.shared_backbone: + *cnet_list, x = self.cnet(torch.cat((image1, image2), dim=0), dual_inp=True, num_layers=self.args.n_gru_layers) + fmap1, fmap2 = self.conv2(x).split(dim=0, split_size=x.shape[0]//2) + else: + cnet_list = self.cnet(image1, num_layers=self.args.n_gru_layers) + fmap1, fmap2 = self.fnet([image1, image2]) + net_list = [torch.tanh(x[0]) for x in cnet_list] + inp_list = [torch.relu(x[1]) for x in cnet_list] + + # Rather than running the GRU's conv layers on the context features multiple times, we do it once at the beginning + inp_list = [list(conv(i).split(split_size=conv.out_channels//3, dim=1)) for i,conv in zip(inp_list, self.context_zqr_convs)] + + if self.args.corr_implementation == "reg": # Default + corr_block = CorrBlock1D + fmap1, fmap2 = fmap1.float(), fmap2.float() + elif self.args.corr_implementation == "alt": # More memory efficient than reg + corr_block = PytorchAlternateCorrBlock1D + fmap1, fmap2 = fmap1.float(), fmap2.float() + elif self.args.corr_implementation == "reg_cuda": # Faster version of reg + corr_block = CorrBlockFast1D + elif self.args.corr_implementation == "alt_cuda": # Faster version of alt + corr_block = AlternateCorrBlock + corr_fn = corr_block(fmap1, fmap2, radius=self.args.corr_radius, num_levels=self.args.corr_levels) + + coords0, coords1 = self.initialize_flow(net_list[0]) + + if flow_init is not None: + coords1 = coords1 + flow_init + + flow_predictions = [] + for itr in range(iters): + coords1 = coords1.detach() + corr = corr_fn(coords1) # index correlation volume + flow = coords1 - coords0 + with autocast(enabled=self.args.mixed_precision): + if self.args.n_gru_layers == 3 and self.args.slow_fast_gru: # Update low-res GRU + net_list = self.update_block(net_list, inp_list, iter32=True, iter16=False, iter08=False, update=False) + if self.args.n_gru_layers >= 2 and self.args.slow_fast_gru:# Update low-res GRU and mid-res GRU + net_list = self.update_block(net_list, inp_list, iter32=self.args.n_gru_layers==3, iter16=True, iter08=False, update=False) + net_list, up_mask, delta_flow = self.update_block(net_list, inp_list, corr, flow, iter32=self.args.n_gru_layers==3, iter16=self.args.n_gru_layers>=2) + + # in stereo mode, project flow onto epipolar + delta_flow[:,1] = 0.0 + + # F(t+1) = F(t) + \Delta(t) + coords1 = coords1 + delta_flow + + # We do not need to upsample or output intermediate results in test_mode + if test_mode and itr < iters-1: + continue + + # upsample predictions + if up_mask is None: + flow_up = upflow8(coords1 - coords0) + else: + flow_up = self.upsample_flow(coords1 - coords0, up_mask) + flow_up = flow_up[:,:1] + + flow_predictions.append(flow_up) + + if test_mode: + return coords1 - coords0, flow_up + + return flow_predictions diff --git a/core/stereo_datasets.py b/core/stereo_datasets.py new file mode 100644 index 0000000..4475e4c --- /dev/null +++ b/core/stereo_datasets.py @@ -0,0 +1,314 @@ +# Data loading based on https://github.com/NVIDIA/flownet2-pytorch + +import numpy as np +import torch +import torch.utils.data as data +import torch.nn.functional as F +import logging +import os +import re +import copy +import math +import random +from pathlib import Path +from glob import glob +import os.path as osp + +from core.utils import frame_utils +from core.utils.augmentor import FlowAugmentor, SparseFlowAugmentor + + +class StereoDataset(data.Dataset): + def __init__(self, aug_params=None, sparse=False, reader=None): + self.augmentor = None + self.sparse = sparse + self.img_pad = aug_params.pop("img_pad", None) if aug_params is not None else None + if aug_params is not None and "crop_size" in aug_params: + if sparse: + self.augmentor = SparseFlowAugmentor(**aug_params) + else: + self.augmentor = FlowAugmentor(**aug_params) + + if reader is None: + self.disparity_reader = frame_utils.read_gen + else: + self.disparity_reader = reader + + self.is_test = False + self.init_seed = False + self.flow_list = [] + self.disparity_list = [] + self.image_list = [] + self.extra_info = [] + + def __getitem__(self, index): + + if self.is_test: + img1 = frame_utils.read_gen(self.image_list[index][0]) + img2 = frame_utils.read_gen(self.image_list[index][1]) + img1 = np.array(img1).astype(np.uint8)[..., :3] + img2 = np.array(img2).astype(np.uint8)[..., :3] + img1 = torch.from_numpy(img1).permute(2, 0, 1).float() + img2 = torch.from_numpy(img2).permute(2, 0, 1).float() + return img1, img2, self.extra_info[index] + + if not self.init_seed: + worker_info = torch.utils.data.get_worker_info() + if worker_info is not None: + torch.manual_seed(worker_info.id) + np.random.seed(worker_info.id) + random.seed(worker_info.id) + self.init_seed = True + + index = index % len(self.image_list) + disp = self.disparity_reader(self.disparity_list[index]) + if isinstance(disp, tuple): + disp, valid = disp + else: + valid = disp < 512 + + img1 = frame_utils.read_gen(self.image_list[index][0]) + img2 = frame_utils.read_gen(self.image_list[index][1]) + + img1 = np.array(img1).astype(np.uint8) + img2 = np.array(img2).astype(np.uint8) + + disp = np.array(disp).astype(np.float32) + flow = np.stack([-disp, np.zeros_like(disp)], axis=-1) + + # grayscale images + if len(img1.shape) == 2: + img1 = np.tile(img1[...,None], (1, 1, 3)) + img2 = np.tile(img2[...,None], (1, 1, 3)) + else: + img1 = img1[..., :3] + img2 = img2[..., :3] + + if self.augmentor is not None: + if self.sparse: + img1, img2, flow, valid = self.augmentor(img1, img2, flow, valid) + else: + img1, img2, flow = self.augmentor(img1, img2, flow) + + img1 = torch.from_numpy(img1).permute(2, 0, 1).float() + img2 = torch.from_numpy(img2).permute(2, 0, 1).float() + flow = torch.from_numpy(flow).permute(2, 0, 1).float() + + if self.sparse: + valid = torch.from_numpy(valid) + else: + valid = (flow[0].abs() < 512) & (flow[1].abs() < 512) + + if self.img_pad is not None: + padH, padW = self.img_pad + img1 = F.pad(img1, [padW]*2 + [padH]*2) + img2 = F.pad(img2, [padW]*2 + [padH]*2) + + flow = flow[:1] + return self.image_list[index] + [self.disparity_list[index]], img1, img2, flow, valid.float() + + + def __mul__(self, v): + copy_of_self = copy.deepcopy(self) + copy_of_self.flow_list = v * copy_of_self.flow_list + copy_of_self.image_list = v * copy_of_self.image_list + copy_of_self.disparity_list = v * copy_of_self.disparity_list + copy_of_self.extra_info = v * copy_of_self.extra_info + return copy_of_self + + def __len__(self): + return len(self.image_list) + + +class SceneFlowDatasets(StereoDataset): + def __init__(self, aug_params=None, root='datasets', dstype='frames_cleanpass', things_test=False): + super(SceneFlowDatasets, self).__init__(aug_params) + self.root = root + self.dstype = dstype + + if things_test: + self._add_things("TEST") + else: + self._add_things("TRAIN") + self._add_monkaa() + self._add_driving() + + def _add_things(self, split='TRAIN'): + """ Add FlyingThings3D data """ + + original_length = len(self.disparity_list) + root = osp.join(self.root, 'FlyingThings3D') + left_images = sorted( glob(osp.join(root, self.dstype, split, '*/*/left/*.png')) ) + right_images = [ im.replace('left', 'right') for im in left_images ] + disparity_images = [ im.replace(self.dstype, 'disparity').replace('.png', '.pfm') for im in left_images ] + + with open(osp.join('datasets', 'flyingthings_validation.txt')) as f: + validation_files = set(f.read().splitlines()) + + for img1, img2, disp in zip(left_images, right_images, disparity_images): + if split == 'TEST' and disp not in validation_files: + continue + self.image_list += [ [img1, img2] ] + self.disparity_list += [ disp ] + logging.info(f"Added {len(self.disparity_list) - original_length} from FlyingThings {self.dstype}") + + def _add_monkaa(self): + """ Add FlyingThings3D data """ + + original_length = len(self.disparity_list) + root = osp.join(self.root, 'Monkaa') + left_images = sorted( glob(osp.join(root, self.dstype, '*/left/*.png')) ) + right_images = [ image_file.replace('left', 'right') for image_file in left_images ] + disparity_images = [ im.replace(self.dstype, 'disparity').replace('.png', '.pfm') for im in left_images ] + + for img1, img2, disp in zip(left_images, right_images, disparity_images): + self.image_list += [ [img1, img2] ] + self.disparity_list += [ disp ] + logging.info(f"Added {len(self.disparity_list) - original_length} from Monkaa {self.dstype}") + + + def _add_driving(self): + """ Add FlyingThings3D data """ + + original_length = len(self.disparity_list) + root = osp.join(self.root, 'Driving') + left_images = sorted( glob(osp.join(root, self.dstype, '*/*/*/left/*.png')) ) + right_images = [ image_file.replace('left', 'right') for image_file in left_images ] + disparity_images = [ im.replace(self.dstype, 'disparity').replace('.png', '.pfm') for im in left_images ] + + for img1, img2, disp in zip(left_images, right_images, disparity_images): + self.image_list += [ [img1, img2] ] + self.disparity_list += [ disp ] + logging.info(f"Added {len(self.disparity_list) - original_length} from Driving {self.dstype}") + + +class ETH3D(StereoDataset): + def __init__(self, aug_params=None, root='datasets/ETH3D', split='training'): + super(ETH3D, self).__init__(aug_params, sparse=True) + + image1_list = sorted( glob(osp.join(root, f'two_view_{split}/*/im0.png')) ) + image2_list = sorted( glob(osp.join(root, f'two_view_{split}/*/im1.png')) ) + disp_list = sorted( glob(osp.join(root, 'two_view_training_gt/*/disp0GT.pfm')) ) if split == 'training' else [osp.join(root, 'two_view_training_gt/playground_1l/disp0GT.pfm')]*len(image1_list) + + for img1, img2, disp in zip(image1_list, image2_list, disp_list): + self.image_list += [ [img1, img2] ] + self.disparity_list += [ disp ] + +class SintelStereo(StereoDataset): + def __init__(self, aug_params=None, root='datasets/SintelStereo'): + super().__init__(aug_params, sparse=True, reader=frame_utils.readDispSintelStereo) + + image1_list = sorted( glob(osp.join(root, 'training/*_left/*/frame_*.png')) ) + image2_list = sorted( glob(osp.join(root, 'training/*_right/*/frame_*.png')) ) + disp_list = sorted( glob(osp.join(root, 'training/disparities/*/frame_*.png')) ) * 2 + + for img1, img2, disp in zip(image1_list, image2_list, disp_list): + assert img1.split('/')[-2:] == disp.split('/')[-2:] + self.image_list += [ [img1, img2] ] + self.disparity_list += [ disp ] + +class FallingThings(StereoDataset): + def __init__(self, aug_params=None, root='datasets/FallingThings'): + super().__init__(aug_params, reader=frame_utils.readDispFallingThings) + assert os.path.exists(root) + + with open(os.path.join(root, 'filenames.txt'), 'r') as f: + filenames = sorted(f.read().splitlines()) + + image1_list = [osp.join(root, e) for e in filenames] + image2_list = [osp.join(root, e.replace('left.jpg', 'right.jpg')) for e in filenames] + disp_list = [osp.join(root, e.replace('left.jpg', 'left.depth.png')) for e in filenames] + + for img1, img2, disp in zip(image1_list, image2_list, disp_list): + self.image_list += [ [img1, img2] ] + self.disparity_list += [ disp ] + +class TartanAir(StereoDataset): + def __init__(self, aug_params=None, root='datasets', keywords=[]): + super().__init__(aug_params, reader=frame_utils.readDispTartanAir) + assert os.path.exists(root) + + with open(os.path.join(root, 'tartanair_filenames.txt'), 'r') as f: + filenames = sorted(list(filter(lambda s: 'seasonsforest_winter/Easy' not in s, f.read().splitlines()))) + for kw in keywords: + filenames = sorted(list(filter(lambda s: kw in s.lower(), filenames))) + + image1_list = [osp.join(root, e) for e in filenames] + image2_list = [osp.join(root, e.replace('_left', '_right')) for e in filenames] + disp_list = [osp.join(root, e.replace('image_left', 'depth_left').replace('left.png', 'left_depth.npy')) for e in filenames] + + for img1, img2, disp in zip(image1_list, image2_list, disp_list): + self.image_list += [ [img1, img2] ] + self.disparity_list += [ disp ] + +class KITTI(StereoDataset): + def __init__(self, aug_params=None, root='datasets/KITTI', image_set='training'): + super(KITTI, self).__init__(aug_params, sparse=True, reader=frame_utils.readDispKITTI) + assert os.path.exists(root) + + image1_list = sorted(glob(os.path.join(root, image_set, 'image_2/*_10.png'))) + image2_list = sorted(glob(os.path.join(root, image_set, 'image_3/*_10.png'))) + disp_list = sorted(glob(os.path.join(root, 'training', 'disp_occ_0/*_10.png'))) if image_set == 'training' else [osp.join(root, 'training/disp_occ_0/000085_10.png')]*len(image1_list) + + for idx, (img1, img2, disp) in enumerate(zip(image1_list, image2_list, disp_list)): + self.image_list += [ [img1, img2] ] + self.disparity_list += [ disp ] + + +class Middlebury(StereoDataset): + def __init__(self, aug_params=None, root='datasets/Middlebury', split='F'): + super(Middlebury, self).__init__(aug_params, sparse=True, reader=frame_utils.readDispMiddlebury) + assert os.path.exists(root) + assert split in "FHQ" + lines = list(map(osp.basename, glob(os.path.join(root, "MiddEval3/trainingF/*")))) + lines = list(filter(lambda p: any(s in p.split('/') for s in Path(os.path.join(root, "MiddEval3/official_train.txt")).read_text().splitlines()), lines)) + image1_list = sorted([os.path.join(root, "MiddEval3", f'training{split}', f'{name}/im0.png') for name in lines]) + image2_list = sorted([os.path.join(root, "MiddEval3", f'training{split}', f'{name}/im1.png') for name in lines]) + disp_list = sorted([os.path.join(root, "MiddEval3", f'training{split}', f'{name}/disp0GT.pfm') for name in lines]) + + assert len(image1_list) == len(image2_list) == len(disp_list) > 0, [image1_list, split] + for img1, img2, disp in zip(image1_list, image2_list, disp_list): + self.image_list += [ [img1, img2] ] + self.disparity_list += [ disp ] + + +def fetch_dataloader(args): + """ Create the data loader for the corresponding trainign set """ + + aug_params = {'crop_size': args.image_size, 'min_scale': args.spatial_scale[0], 'max_scale': args.spatial_scale[1], 'do_flip': False, 'yjitter': not args.noyjitter} + if hasattr(args, "saturation_range") and args.saturation_range is not None: + aug_params["saturation_range"] = args.saturation_range + if hasattr(args, "img_gamma") and args.img_gamma is not None: + aug_params["gamma"] = args.img_gamma + if hasattr(args, "do_flip") and args.do_flip is not None: + aug_params["do_flip"] = args.do_flip + + train_dataset = None + for dataset_name in args.train_datasets: + if re.compile("middlebury_.*").fullmatch(dataset_name): + new_dataset = Middlebury(aug_params, split=dataset_name.replace('middlebury_','')) + elif dataset_name == 'sceneflow': + clean_dataset = SceneFlowDatasets(aug_params, dstype='frames_cleanpass') + final_dataset = SceneFlowDatasets(aug_params, dstype='frames_finalpass') + new_dataset = (clean_dataset*4) + (final_dataset*4) + logging.info(f"Adding {len(new_dataset)} samples from SceneFlow") + elif 'kitti' in dataset_name: + new_dataset = KITTI(aug_params, split=dataset_name) + logging.info(f"Adding {len(new_dataset)} samples from KITTI") + elif dataset_name == 'sintel_stereo': + new_dataset = SintelStereo(aug_params)*140 + logging.info(f"Adding {len(new_dataset)} samples from Sintel Stereo") + elif dataset_name == 'falling_things': + new_dataset = FallingThings(aug_params)*5 + logging.info(f"Adding {len(new_dataset)} samples from FallingThings") + elif dataset_name.startswith('tartan_air'): + new_dataset = TartanAir(aug_params, keywords=dataset_name.split('_')[2:]) + logging.info(f"Adding {len(new_dataset)} samples from Tartain Air") + train_dataset = new_dataset if train_dataset is None else train_dataset + new_dataset + + train_loader = data.DataLoader(train_dataset, batch_size=args.batch_size, + pin_memory=True, shuffle=True, num_workers=int(os.environ.get('SLURM_CPUS_PER_TASK', 6))-2, drop_last=True) + + logging.info('Training with %d image pairs' % len(train_dataset)) + return train_loader + diff --git a/core/update.py b/core/update.py new file mode 100644 index 0000000..ae3fac5 --- /dev/null +++ b/core/update.py @@ -0,0 +1,138 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from opt_einsum import contract + +class FlowHead(nn.Module): + def __init__(self, input_dim=128, hidden_dim=256, output_dim=2): + super(FlowHead, self).__init__() + self.conv1 = nn.Conv2d(input_dim, hidden_dim, 3, padding=1) + self.conv2 = nn.Conv2d(hidden_dim, output_dim, 3, padding=1) + self.relu = nn.ReLU(inplace=True) + + def forward(self, x): + return self.conv2(self.relu(self.conv1(x))) + +class ConvGRU(nn.Module): + def __init__(self, hidden_dim, input_dim, kernel_size=3): + super(ConvGRU, self).__init__() + self.convz = nn.Conv2d(hidden_dim+input_dim, hidden_dim, kernel_size, padding=kernel_size//2) + self.convr = nn.Conv2d(hidden_dim+input_dim, hidden_dim, kernel_size, padding=kernel_size//2) + self.convq = nn.Conv2d(hidden_dim+input_dim, hidden_dim, kernel_size, padding=kernel_size//2) + + def forward(self, h, cz, cr, cq, *x_list): + x = torch.cat(x_list, dim=1) + hx = torch.cat([h, x], dim=1) + + z = torch.sigmoid(self.convz(hx) + cz) + r = torch.sigmoid(self.convr(hx) + cr) + q = torch.tanh(self.convq(torch.cat([r*h, x], dim=1)) + cq) + + h = (1-z) * h + z * q + return h + +class SepConvGRU(nn.Module): + def __init__(self, hidden_dim=128, input_dim=192+128): + super(SepConvGRU, self).__init__() + self.convz1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) + self.convr1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) + self.convq1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) + + self.convz2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) + self.convr2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) + self.convq2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) + + + def forward(self, h, *x): + # horizontal + x = torch.cat(x, dim=1) + hx = torch.cat([h, x], dim=1) + z = torch.sigmoid(self.convz1(hx)) + r = torch.sigmoid(self.convr1(hx)) + q = torch.tanh(self.convq1(torch.cat([r*h, x], dim=1))) + h = (1-z) * h + z * q + + # vertical + hx = torch.cat([h, x], dim=1) + z = torch.sigmoid(self.convz2(hx)) + r = torch.sigmoid(self.convr2(hx)) + q = torch.tanh(self.convq2(torch.cat([r*h, x], dim=1))) + h = (1-z) * h + z * q + + return h + +class BasicMotionEncoder(nn.Module): + def __init__(self, args): + super(BasicMotionEncoder, self).__init__() + self.args = args + + cor_planes = args.corr_levels * (2*args.corr_radius + 1) + + self.convc1 = nn.Conv2d(cor_planes, 64, 1, padding=0) + self.convc2 = nn.Conv2d(64, 64, 3, padding=1) + self.convf1 = nn.Conv2d(2, 64, 7, padding=3) + self.convf2 = nn.Conv2d(64, 64, 3, padding=1) + self.conv = nn.Conv2d(64+64, 128-2, 3, padding=1) + + def forward(self, flow, corr): + cor = F.relu(self.convc1(corr)) + cor = F.relu(self.convc2(cor)) + flo = F.relu(self.convf1(flow)) + flo = F.relu(self.convf2(flo)) + + cor_flo = torch.cat([cor, flo], dim=1) + out = F.relu(self.conv(cor_flo)) + return torch.cat([out, flow], dim=1) + +def pool2x(x): + return F.avg_pool2d(x, 3, stride=2, padding=1) + +def pool4x(x): + return F.avg_pool2d(x, 5, stride=4, padding=1) + +def interp(x, dest): + interp_args = {'mode': 'bilinear', 'align_corners': True} + return F.interpolate(x, dest.shape[2:], **interp_args) + +class BasicMultiUpdateBlock(nn.Module): + def __init__(self, args, hidden_dims=[]): + super().__init__() + self.args = args + self.encoder = BasicMotionEncoder(args) + encoder_output_dim = 128 + + self.gru08 = ConvGRU(hidden_dims[2], encoder_output_dim + hidden_dims[1] * (args.n_gru_layers > 1)) + self.gru16 = ConvGRU(hidden_dims[1], hidden_dims[0] * (args.n_gru_layers == 3) + hidden_dims[2]) + self.gru32 = ConvGRU(hidden_dims[0], hidden_dims[1]) + self.flow_head = FlowHead(hidden_dims[2], hidden_dim=256, output_dim=2) + factor = 2**self.args.n_downsample + + self.mask = nn.Sequential( + nn.Conv2d(hidden_dims[2], 256, 3, padding=1), + nn.ReLU(inplace=True), + nn.Conv2d(256, (factor**2)*9, 1, padding=0)) + + def forward(self, net, inp, corr=None, flow=None, iter08=True, iter16=True, iter32=True, update=True): + + if iter32: + net[2] = self.gru32(net[2], *(inp[2]), pool2x(net[1])) + if iter16: + if self.args.n_gru_layers > 2: + net[1] = self.gru16(net[1], *(inp[1]), pool2x(net[0]), interp(net[2], net[1])) + else: + net[1] = self.gru16(net[1], *(inp[1]), pool2x(net[0])) + if iter08: + motion_features = self.encoder(flow, corr) + if self.args.n_gru_layers > 1: + net[0] = self.gru08(net[0], *(inp[0]), motion_features, interp(net[1], net[0])) + else: + net[0] = self.gru08(net[0], *(inp[0]), motion_features) + + if not update: + return net + + delta_flow = self.flow_head(net[0]) + + # scale mask to balence gradients + mask = .25 * self.mask(net[0]) + return net, mask, delta_flow diff --git a/core/utils/__init__.py b/core/utils/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/core/utils/augmentor.py b/core/utils/augmentor.py new file mode 100644 index 0000000..b407f98 --- /dev/null +++ b/core/utils/augmentor.py @@ -0,0 +1,317 @@ +import numpy as np +import random +import warnings +import os +import time +from glob import glob +from skimage import color, io +from PIL import Image + +import cv2 +cv2.setNumThreads(0) +cv2.ocl.setUseOpenCL(False) + +import torch +from torchvision.transforms import ColorJitter, functional, Compose +import torch.nn.functional as F + +def get_middlebury_images(): + root = "datasets/Middlebury/MiddEval3" + with open(os.path.join(root, "official_train.txt"), 'r') as f: + lines = f.read().splitlines() + return sorted([os.path.join(root, 'trainingQ', f'{name}/im0.png') for name in lines]) + +def get_eth3d_images(): + return sorted(glob('datasets/ETH3D/two_view_training/*/im0.png')) + +def get_kitti_images(): + return sorted(glob('datasets/KITTI/training/image_2/*_10.png')) + +def transfer_color(image, style_mean, style_stddev): + reference_image_lab = color.rgb2lab(image) + reference_stddev = np.std(reference_image_lab, axis=(0,1), keepdims=True)# + 1 + reference_mean = np.mean(reference_image_lab, axis=(0,1), keepdims=True) + + reference_image_lab = reference_image_lab - reference_mean + lamb = style_stddev/reference_stddev + style_image_lab = lamb * reference_image_lab + output_image_lab = style_image_lab + style_mean + l, a, b = np.split(output_image_lab, 3, axis=2) + l = l.clip(0, 100) + output_image_lab = np.concatenate((l,a,b), axis=2) + with warnings.catch_warnings(): + warnings.simplefilter("ignore", category=UserWarning) + output_image_rgb = color.lab2rgb(output_image_lab) * 255 + return output_image_rgb + +class AdjustGamma(object): + + def __init__(self, gamma_min, gamma_max, gain_min=1.0, gain_max=1.0): + self.gamma_min, self.gamma_max, self.gain_min, self.gain_max = gamma_min, gamma_max, gain_min, gain_max + + def __call__(self, sample): + gain = random.uniform(self.gain_min, self.gain_max) + gamma = random.uniform(self.gamma_min, self.gamma_max) + return functional.adjust_gamma(sample, gamma, gain) + + def __repr__(self): + return f"Adjust Gamma {self.gamma_min}, ({self.gamma_max}) and Gain ({self.gain_min}, {self.gain_max})" + +class FlowAugmentor: + def __init__(self, crop_size, min_scale=-0.2, max_scale=0.5, do_flip=True, yjitter=False, saturation_range=[0.6,1.4], gamma=[1,1,1,1]): + + # spatial augmentation params + self.crop_size = crop_size + self.min_scale = min_scale + self.max_scale = max_scale + self.spatial_aug_prob = 1.0 + self.stretch_prob = 0.8 + self.max_stretch = 0.2 + + # flip augmentation params + self.yjitter = yjitter + self.do_flip = do_flip + self.h_flip_prob = 0.5 + self.v_flip_prob = 0.1 + + # photometric augmentation params + self.photo_aug = Compose([ColorJitter(brightness=0.4, contrast=0.4, saturation=saturation_range, hue=0.5/3.14), AdjustGamma(*gamma)]) + self.asymmetric_color_aug_prob = 0.2 + self.eraser_aug_prob = 0.5 + + def color_transform(self, img1, img2): + """ Photometric augmentation """ + + # asymmetric + if np.random.rand() < self.asymmetric_color_aug_prob: + img1 = np.array(self.photo_aug(Image.fromarray(img1)), dtype=np.uint8) + img2 = np.array(self.photo_aug(Image.fromarray(img2)), dtype=np.uint8) + + # symmetric + else: + image_stack = np.concatenate([img1, img2], axis=0) + image_stack = np.array(self.photo_aug(Image.fromarray(image_stack)), dtype=np.uint8) + img1, img2 = np.split(image_stack, 2, axis=0) + + return img1, img2 + + def eraser_transform(self, img1, img2, bounds=[50, 100]): + """ Occlusion augmentation """ + + ht, wd = img1.shape[:2] + if np.random.rand() < self.eraser_aug_prob: + mean_color = np.mean(img2.reshape(-1, 3), axis=0) + for _ in range(np.random.randint(1, 3)): + x0 = np.random.randint(0, wd) + y0 = np.random.randint(0, ht) + dx = np.random.randint(bounds[0], bounds[1]) + dy = np.random.randint(bounds[0], bounds[1]) + img2[y0:y0+dy, x0:x0+dx, :] = mean_color + + return img1, img2 + + def spatial_transform(self, img1, img2, flow): + # randomly sample scale + ht, wd = img1.shape[:2] + min_scale = np.maximum( + (self.crop_size[0] + 8) / float(ht), + (self.crop_size[1] + 8) / float(wd)) + + scale = 2 ** np.random.uniform(self.min_scale, self.max_scale) + scale_x = scale + scale_y = scale + if np.random.rand() < self.stretch_prob: + scale_x *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch) + scale_y *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch) + + scale_x = np.clip(scale_x, min_scale, None) + scale_y = np.clip(scale_y, min_scale, None) + + if np.random.rand() < self.spatial_aug_prob: + # rescale the images + img1 = cv2.resize(img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) + img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) + flow = cv2.resize(flow, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) + flow = flow * [scale_x, scale_y] + + if self.do_flip: + if np.random.rand() < self.h_flip_prob and self.do_flip == 'hf': # h-flip + img1 = img1[:, ::-1] + img2 = img2[:, ::-1] + flow = flow[:, ::-1] * [-1.0, 1.0] + + if np.random.rand() < self.h_flip_prob and self.do_flip == 'h': # h-flip for stereo + tmp = img1[:, ::-1] + img1 = img2[:, ::-1] + img2 = tmp + + if np.random.rand() < self.v_flip_prob and self.do_flip == 'v': # v-flip + img1 = img1[::-1, :] + img2 = img2[::-1, :] + flow = flow[::-1, :] * [1.0, -1.0] + + if self.yjitter: + y0 = np.random.randint(2, img1.shape[0] - self.crop_size[0] - 2) + x0 = np.random.randint(2, img1.shape[1] - self.crop_size[1] - 2) + + y1 = y0 + np.random.randint(-2, 2 + 1) + img1 = img1[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] + img2 = img2[y1:y1+self.crop_size[0], x0:x0+self.crop_size[1]] + flow = flow[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] + + else: + y0 = np.random.randint(0, img1.shape[0] - self.crop_size[0]) + x0 = np.random.randint(0, img1.shape[1] - self.crop_size[1]) + + img1 = img1[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] + img2 = img2[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] + flow = flow[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] + + return img1, img2, flow + + + def __call__(self, img1, img2, flow): + img1, img2 = self.color_transform(img1, img2) + img1, img2 = self.eraser_transform(img1, img2) + img1, img2, flow = self.spatial_transform(img1, img2, flow) + + img1 = np.ascontiguousarray(img1) + img2 = np.ascontiguousarray(img2) + flow = np.ascontiguousarray(flow) + + return img1, img2, flow + +class SparseFlowAugmentor: + def __init__(self, crop_size, min_scale=-0.2, max_scale=0.5, do_flip=False, yjitter=False, saturation_range=[0.7,1.3], gamma=[1,1,1,1]): + # spatial augmentation params + self.crop_size = crop_size + self.min_scale = min_scale + self.max_scale = max_scale + self.spatial_aug_prob = 0.8 + self.stretch_prob = 0.8 + self.max_stretch = 0.2 + + # flip augmentation params + self.do_flip = do_flip + self.h_flip_prob = 0.5 + self.v_flip_prob = 0.1 + + # photometric augmentation params + self.photo_aug = Compose([ColorJitter(brightness=0.3, contrast=0.3, saturation=saturation_range, hue=0.3/3.14), AdjustGamma(*gamma)]) + self.asymmetric_color_aug_prob = 0.2 + self.eraser_aug_prob = 0.5 + + def color_transform(self, img1, img2): + image_stack = np.concatenate([img1, img2], axis=0) + image_stack = np.array(self.photo_aug(Image.fromarray(image_stack)), dtype=np.uint8) + img1, img2 = np.split(image_stack, 2, axis=0) + return img1, img2 + + def eraser_transform(self, img1, img2): + ht, wd = img1.shape[:2] + if np.random.rand() < self.eraser_aug_prob: + mean_color = np.mean(img2.reshape(-1, 3), axis=0) + for _ in range(np.random.randint(1, 3)): + x0 = np.random.randint(0, wd) + y0 = np.random.randint(0, ht) + dx = np.random.randint(50, 100) + dy = np.random.randint(50, 100) + img2[y0:y0+dy, x0:x0+dx, :] = mean_color + + return img1, img2 + + def resize_sparse_flow_map(self, flow, valid, fx=1.0, fy=1.0): + ht, wd = flow.shape[:2] + coords = np.meshgrid(np.arange(wd), np.arange(ht)) + coords = np.stack(coords, axis=-1) + + coords = coords.reshape(-1, 2).astype(np.float32) + flow = flow.reshape(-1, 2).astype(np.float32) + valid = valid.reshape(-1).astype(np.float32) + + coords0 = coords[valid>=1] + flow0 = flow[valid>=1] + + ht1 = int(round(ht * fy)) + wd1 = int(round(wd * fx)) + + coords1 = coords0 * [fx, fy] + flow1 = flow0 * [fx, fy] + + xx = np.round(coords1[:,0]).astype(np.int32) + yy = np.round(coords1[:,1]).astype(np.int32) + + v = (xx > 0) & (xx < wd1) & (yy > 0) & (yy < ht1) + xx = xx[v] + yy = yy[v] + flow1 = flow1[v] + + flow_img = np.zeros([ht1, wd1, 2], dtype=np.float32) + valid_img = np.zeros([ht1, wd1], dtype=np.int32) + + flow_img[yy, xx] = flow1 + valid_img[yy, xx] = 1 + + return flow_img, valid_img + + def spatial_transform(self, img1, img2, flow, valid): + # randomly sample scale + + ht, wd = img1.shape[:2] + min_scale = np.maximum( + (self.crop_size[0] + 1) / float(ht), + (self.crop_size[1] + 1) / float(wd)) + + scale = 2 ** np.random.uniform(self.min_scale, self.max_scale) + scale_x = np.clip(scale, min_scale, None) + scale_y = np.clip(scale, min_scale, None) + + if np.random.rand() < self.spatial_aug_prob: + # rescale the images + img1 = cv2.resize(img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) + img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) + flow, valid = self.resize_sparse_flow_map(flow, valid, fx=scale_x, fy=scale_y) + + if self.do_flip: + if np.random.rand() < self.h_flip_prob and self.do_flip == 'hf': # h-flip + img1 = img1[:, ::-1] + img2 = img2[:, ::-1] + flow = flow[:, ::-1] * [-1.0, 1.0] + + if np.random.rand() < self.h_flip_prob and self.do_flip == 'h': # h-flip for stereo + tmp = img1[:, ::-1] + img1 = img2[:, ::-1] + img2 = tmp + + if np.random.rand() < self.v_flip_prob and self.do_flip == 'v': # v-flip + img1 = img1[::-1, :] + img2 = img2[::-1, :] + flow = flow[::-1, :] * [1.0, -1.0] + + margin_y = 20 + margin_x = 50 + + y0 = np.random.randint(0, img1.shape[0] - self.crop_size[0] + margin_y) + x0 = np.random.randint(-margin_x, img1.shape[1] - self.crop_size[1] + margin_x) + + y0 = np.clip(y0, 0, img1.shape[0] - self.crop_size[0]) + x0 = np.clip(x0, 0, img1.shape[1] - self.crop_size[1]) + + img1 = img1[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] + img2 = img2[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] + flow = flow[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] + valid = valid[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] + return img1, img2, flow, valid + + + def __call__(self, img1, img2, flow, valid): + img1, img2 = self.color_transform(img1, img2) + img1, img2 = self.eraser_transform(img1, img2) + img1, img2, flow, valid = self.spatial_transform(img1, img2, flow, valid) + + img1 = np.ascontiguousarray(img1) + img2 = np.ascontiguousarray(img2) + flow = np.ascontiguousarray(flow) + valid = np.ascontiguousarray(valid) + + return img1, img2, flow, valid diff --git a/core/utils/frame_utils.py b/core/utils/frame_utils.py new file mode 100644 index 0000000..10d3d85 --- /dev/null +++ b/core/utils/frame_utils.py @@ -0,0 +1,187 @@ +import numpy as np +from PIL import Image +from os.path import * +import re +import json +import imageio +import cv2 +cv2.setNumThreads(0) +cv2.ocl.setUseOpenCL(False) + +TAG_CHAR = np.array([202021.25], np.float32) + +def readFlow(fn): + """ Read .flo file in Middlebury format""" + # Code adapted from: + # http://stackoverflow.com/questions/28013200/reading-middlebury-flow-files-with-python-bytes-array-numpy + + # WARNING: this will work on little-endian architectures (eg Intel x86) only! + # print 'fn = %s'%(fn) + with open(fn, 'rb') as f: + magic = np.fromfile(f, np.float32, count=1) + if 202021.25 != magic: + print('Magic number incorrect. Invalid .flo file') + return None + else: + w = np.fromfile(f, np.int32, count=1) + h = np.fromfile(f, np.int32, count=1) + # print 'Reading %d x %d flo file\n' % (w, h) + data = np.fromfile(f, np.float32, count=2*int(w)*int(h)) + # Reshape data into 3D array (columns, rows, bands) + # The reshape here is for visualization, the original code is (w,h,2) + return np.resize(data, (int(h), int(w), 2)) + +def readPFM(file): + file = open(file, 'rb') + + color = None + width = None + height = None + scale = None + endian = None + + header = file.readline().rstrip() + if header == b'PF': + color = True + elif header == b'Pf': + color = False + else: + raise Exception('Not a PFM file.') + + dim_match = re.match(rb'^(\d+)\s(\d+)\s$', file.readline()) + if dim_match: + width, height = map(int, dim_match.groups()) + else: + raise Exception('Malformed PFM header.') + + scale = float(file.readline().rstrip()) + if scale < 0: # little-endian + endian = '<' + scale = -scale + else: + endian = '>' # big-endian + + data = np.fromfile(file, endian + 'f') + shape = (height, width, 3) if color else (height, width) + + data = np.reshape(data, shape) + data = np.flipud(data) + return data + +def writePFM(file, array): + import os + assert type(file) is str and type(array) is np.ndarray and \ + os.path.splitext(file)[1] == ".pfm" + with open(file, 'wb') as f: + H, W = array.shape + headers = ["Pf\n", f"{W} {H}\n", "-1\n"] + for header in headers: + f.write(str.encode(header)) + array = np.flip(array, axis=0).astype(np.float32) + f.write(array.tobytes()) + + + +def writeFlow(filename,uv,v=None): + """ Write optical flow to file. + + If v is None, uv is assumed to contain both u and v channels, + stacked in depth. + Original code by Deqing Sun, adapted from Daniel Scharstein. + """ + nBands = 2 + + if v is None: + assert(uv.ndim == 3) + assert(uv.shape[2] == 2) + u = uv[:,:,0] + v = uv[:,:,1] + else: + u = uv + + assert(u.shape == v.shape) + height,width = u.shape + f = open(filename,'wb') + # write the header + f.write(TAG_CHAR) + np.array(width).astype(np.int32).tofile(f) + np.array(height).astype(np.int32).tofile(f) + # arrange into matrix form + tmp = np.zeros((height, width*nBands)) + tmp[:,np.arange(width)*2] = u + tmp[:,np.arange(width)*2 + 1] = v + tmp.astype(np.float32).tofile(f) + f.close() + + +def readFlowKITTI(filename): + flow = cv2.imread(filename, cv2.IMREAD_ANYDEPTH|cv2.IMREAD_COLOR) + flow = flow[:,:,::-1].astype(np.float32) + flow, valid = flow[:, :, :2], flow[:, :, 2] + flow = (flow - 2**15) / 64.0 + return flow, valid + +def readDispKITTI(filename): + disp = cv2.imread(filename, cv2.IMREAD_ANYDEPTH) / 256.0 + valid = disp > 0.0 + return disp, valid + +# Method taken from /n/fs/raft-depth/RAFT-Stereo/datasets/SintelStereo/sdk/python/sintel_io.py +def readDispSintelStereo(file_name): + a = np.array(Image.open(file_name)) + d_r, d_g, d_b = np.split(a, axis=2, indices_or_sections=3) + disp = (d_r * 4 + d_g / (2**6) + d_b / (2**14))[..., 0] + mask = np.array(Image.open(file_name.replace('disparities', 'occlusions'))) + valid = ((mask == 0) & (disp > 0)) + return disp, valid + +# Method taken from https://research.nvidia.com/sites/default/files/pubs/2018-06_Falling-Things/readme_0.txt +def readDispFallingThings(file_name): + a = np.array(Image.open(file_name)) + with open('/'.join(file_name.split('/')[:-1] + ['_camera_settings.json']), 'r') as f: + intrinsics = json.load(f) + fx = intrinsics['camera_settings'][0]['intrinsic_settings']['fx'] + disp = (fx * 6.0 * 100) / a.astype(np.float32) + valid = disp > 0 + return disp, valid + +# Method taken from https://github.com/castacks/tartanair_tools/blob/master/data_type.md +def readDispTartanAir(file_name): + depth = np.load(file_name) + disp = 80.0 / depth + valid = disp > 0 + return disp, valid + + +def readDispMiddlebury(file_name): + assert basename(file_name) == 'disp0GT.pfm' + disp = readPFM(file_name).astype(np.float32) + assert len(disp.shape) == 2 + nocc_pix = file_name.replace('disp0GT.pfm', 'mask0nocc.png') + assert exists(nocc_pix) + nocc_pix = imageio.imread(nocc_pix) == 255 + assert np.any(nocc_pix) + return disp, nocc_pix + +def writeFlowKITTI(filename, uv): + uv = 64.0 * uv + 2**15 + valid = np.ones([uv.shape[0], uv.shape[1], 1]) + uv = np.concatenate([uv, valid], axis=-1).astype(np.uint16) + cv2.imwrite(filename, uv[..., ::-1]) + + +def read_gen(file_name, pil=False): + ext = splitext(file_name)[-1] + if ext == '.png' or ext == '.jpeg' or ext == '.ppm' or ext == '.jpg': + return Image.open(file_name) + elif ext == '.bin' or ext == '.raw': + return np.load(file_name) + elif ext == '.flo': + return readFlow(file_name).astype(np.float32) + elif ext == '.pfm': + flow = readPFM(file_name).astype(np.float32) + if len(flow.shape) == 2: + return flow + else: + return flow[:, :, :-1] + return [] \ No newline at end of file diff --git a/core/utils/utils.py b/core/utils/utils.py new file mode 100644 index 0000000..d6d5953 --- /dev/null +++ b/core/utils/utils.py @@ -0,0 +1,93 @@ +import torch +import torch.nn.functional as F +import numpy as np +from scipy import interpolate + + +class InputPadder: + """ Pads images such that dimensions are divisible by 8 """ + def __init__(self, dims, mode='sintel', divis_by=8): + self.ht, self.wd = dims[-2:] + pad_ht = (((self.ht // divis_by) + 1) * divis_by - self.ht) % divis_by + pad_wd = (((self.wd // divis_by) + 1) * divis_by - self.wd) % divis_by + if mode == 'sintel': + self._pad = [pad_wd//2, pad_wd - pad_wd//2, pad_ht//2, pad_ht - pad_ht//2] + else: + self._pad = [pad_wd//2, pad_wd - pad_wd//2, 0, pad_ht] + + def pad(self, *inputs): + assert all((x.ndim == 4) for x in inputs) + return [F.pad(x, self._pad, mode='replicate') for x in inputs] + + def unpad(self, x): + assert x.ndim == 4 + ht, wd = x.shape[-2:] + c = [self._pad[2], ht-self._pad[3], self._pad[0], wd-self._pad[1]] + return x[..., c[0]:c[1], c[2]:c[3]] + +def forward_interpolate(flow): + flow = flow.detach().cpu().numpy() + dx, dy = flow[0], flow[1] + + ht, wd = dx.shape + x0, y0 = np.meshgrid(np.arange(wd), np.arange(ht)) + + x1 = x0 + dx + y1 = y0 + dy + + x1 = x1.reshape(-1) + y1 = y1.reshape(-1) + dx = dx.reshape(-1) + dy = dy.reshape(-1) + + valid = (x1 > 0) & (x1 < wd) & (y1 > 0) & (y1 < ht) + x1 = x1[valid] + y1 = y1[valid] + dx = dx[valid] + dy = dy[valid] + + flow_x = interpolate.griddata( + (x1, y1), dx, (x0, y0), method='nearest', fill_value=0) + + flow_y = interpolate.griddata( + (x1, y1), dy, (x0, y0), method='nearest', fill_value=0) + + flow = np.stack([flow_x, flow_y], axis=0) + return torch.from_numpy(flow).float() + + +def bilinear_sampler(img, coords, mode='bilinear', mask=False): + """ Wrapper for grid_sample, uses pixel coordinates """ + H, W = img.shape[-2:] + xgrid, ygrid = coords.split([1,1], dim=-1) + xgrid = 2*xgrid/(W-1) - 1 + assert torch.unique(ygrid).numel() == 1 and H == 1 # This is a stereo problem + + grid = torch.cat([xgrid, ygrid], dim=-1) + img = F.grid_sample(img, grid, align_corners=True) + + if mask: + mask = (xgrid > -1) & (ygrid > -1) & (xgrid < 1) & (ygrid < 1) + return img, mask.float() + + return img + + +def coords_grid(batch, ht, wd): + coords = torch.meshgrid(torch.arange(ht), torch.arange(wd)) + coords = torch.stack(coords[::-1], dim=0).float() + return coords[None].repeat(batch, 1, 1, 1) + + +def upflow8(flow, mode='bilinear'): + new_size = (8 * flow.shape[2], 8 * flow.shape[3]) + return 8 * F.interpolate(flow, size=new_size, mode=mode, align_corners=True) + +def gauss_blur(input, N=5, std=1): + B, D, H, W = input.shape + x, y = torch.meshgrid(torch.arange(N).float() - N//2, torch.arange(N).float() - N//2) + unnormalized_gaussian = torch.exp(-(x.pow(2) + y.pow(2)) / (2 * std ** 2)) + weights = unnormalized_gaussian / unnormalized_gaussian.sum().clamp(min=1e-4) + weights = weights.view(1,1,N,N).to(input) + output = F.conv2d(input.reshape(B*D,1,H,W), weights, padding=N//2) + return output.view(B, D, H, W) \ No newline at end of file diff --git a/demo.py b/demo.py new file mode 100644 index 0000000..f0a029a --- /dev/null +++ b/demo.py @@ -0,0 +1,75 @@ +import sys +sys.path.append('core') + +import argparse +import glob +import numpy as np +import torch +from tqdm import tqdm +from pathlib import Path +from raft_stereo import RAFTStereo +from utils.utils import InputPadder +from PIL import Image +from matplotlib import pyplot as plt + + +DEVICE = 'cuda' + +def load_image(imfile): + img = np.array(Image.open(imfile)).astype(np.uint8) + img = torch.from_numpy(img).permute(2, 0, 1).float() + return img[None].to(DEVICE) + +def demo(args): + model = torch.nn.DataParallel(RAFTStereo(args), device_ids=[0]) + model.load_state_dict(torch.load(args.restore_ckpt)) + + model = model.module + model.to(DEVICE) + model.eval() + + output_directory = Path(args.output_directory) + output_directory.mkdir(exist_ok=True) + + with torch.no_grad(): + left_images = sorted(glob.glob(args.left_imgs, recursive=True)) + right_images = sorted(glob.glob(args.right_imgs, recursive=True)) + print(f"Found {len(left_images)} images. Saving files to {output_directory}/") + + for (imfile1, imfile2) in tqdm(list(zip(left_images, right_images))): + image1 = load_image(imfile1) + image2 = load_image(imfile2) + + padder = InputPadder(image1.shape, divis_by=32) + image1, image2 = padder.pad(image1, image2) + + _, flow_up = model(image1, image2, iters=args.valid_iters, test_mode=True) + file_stem = imfile1.split('/')[-2] + if args.save_numpy: + np.save(output_directory / f"{file_stem}.npy", flow_up.cpu().numpy().squeeze()) + plt.imsave(output_directory / f"{file_stem}.png", -flow_up.cpu().numpy().squeeze(), cmap='jet') + + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument('--restore_ckpt', help="restore checkpoint", required=True) + parser.add_argument('--save_numpy', action='store_true', help='save output as numpy arrays') + parser.add_argument('-l', '--left_imgs', help="path to all first (left) frames", default="datasets/Middlebury/MiddEval3/testH/*/im0.png") + parser.add_argument('-r', '--right_imgs', help="path to all second (right) frames", default="datasets/Middlebury/MiddEval3/testH/*/im1.png") + parser.add_argument('--output_directory', help="directory to save output", default="demo_output") + parser.add_argument('--mixed_precision', action='store_true', help='use mixed precision') + parser.add_argument('--valid_iters', type=int, default=32, help='number of flow-field updates during forward pass') + + # Architecture choices + parser.add_argument('--hidden_dims', nargs='+', type=int, default=[128]*3, help="hidden state and context dimensions") + parser.add_argument('--corr_implementation', choices=["reg", "alt", "reg_cuda", "alt_cuda"], default="reg", help="correlation volume implementation") + parser.add_argument('--shared_backbone', action='store_true', help="use a single backbone for the context and feature encoders") + parser.add_argument('--corr_levels', type=int, default=4, help="number of levels in the correlation pyramid") + parser.add_argument('--corr_radius', type=int, default=4, help="width of the correlation pyramid") + parser.add_argument('--n_downsample', type=int, default=2, help="resolution of the disparity field (1/2^K)") + parser.add_argument('--slow_fast_gru', action='store_true', help="iterate the low-res GRUs more frequently") + parser.add_argument('--n_gru_layers', type=int, default=3, help="number of hidden GRU levels") + + args = parser.parse_args() + + demo(args) diff --git a/depth_eq.png b/depth_eq.png new file mode 100644 index 0000000..d731f06 Binary files /dev/null and b/depth_eq.png differ diff --git a/download_datasets.sh b/download_datasets.sh new file mode 100755 index 0000000..ee48fd7 --- /dev/null +++ b/download_datasets.sh @@ -0,0 +1,24 @@ +mkdir datasets/Middlebury -p +cd datasets/Middlebury/ +wget https://www.dropbox.com/s/fn8siy5muak3of3/official_train.txt -P MiddEval3/ +wget https://vision.middlebury.edu/stereo/submit3/zip/MiddEval3-data-Q.zip +unzip MiddEval3-data-Q.zip +wget https://vision.middlebury.edu/stereo/submit3/zip/MiddEval3-GT0-Q.zip +unzip MiddEval3-GT0-Q.zip +wget https://vision.middlebury.edu/stereo/submit3/zip/MiddEval3-data-H.zip +unzip MiddEval3-data-H.zip +wget https://vision.middlebury.edu/stereo/submit3/zip/MiddEval3-GT0-H.zip +unzip MiddEval3-GT0-H.zip +wget https://vision.middlebury.edu/stereo/submit3/zip/MiddEval3-data-F.zip +unzip MiddEval3-data-F.zip +wget https://vision.middlebury.edu/stereo/submit3/zip/MiddEval3-GT0-F.zip +unzip MiddEval3-GT0-F.zip +rm *.zip +cd ../.. + +mkdir datasets/ETH3D -p +cd datasets/ETH3D/ +wget https://www.eth3d.net/data/two_view_test.7z +echo "Unzipping two_view_test.7z using p7zip (installed from environment.yaml)" +7za x two_view_test.7z +cd ../.. \ No newline at end of file diff --git a/download_models.sh b/download_models.sh new file mode 100755 index 0000000..fa84e29 --- /dev/null +++ b/download_models.sh @@ -0,0 +1,6 @@ +#!/bin/bash +mkdir models -p +cd models +wget https://www.dropbox.com/s/q4312z8g5znhhkp/models.zip +unzip models.zip +rm models.zip -f diff --git a/environment.yaml b/environment.yaml new file mode 100644 index 0000000..6532755 --- /dev/null +++ b/environment.yaml @@ -0,0 +1,19 @@ +name: raftstereo +channels: + - pytorch + - bioconda + - defaults +dependencies: + - python=3.7.6 + - pytorch=1.7.0 + - torchvision=0.8.1 + - cudatoolkit=10.2.89 + - matplotlib + - tensorboard + - scipy + - opencv + - tqdm + - opt_einsum + - imageio + - scikit-image + - p7zip diff --git a/evaluate_stereo.py b/evaluate_stereo.py new file mode 100644 index 0000000..746c843 --- /dev/null +++ b/evaluate_stereo.py @@ -0,0 +1,242 @@ +from __future__ import print_function, division +import sys +sys.path.append('core') + +import argparse +import time +import logging +import numpy as np +import torch +from tqdm import tqdm +from raft_stereo import RAFTStereo, autocast +import stereo_datasets as datasets +from utils.utils import InputPadder + +def count_parameters(model): + return sum(p.numel() for p in model.parameters() if p.requires_grad) + +@torch.no_grad() +def validate_eth3d(model, iters=32, mixed_prec=False): + """ Peform validation using the ETH3D (train) split """ + model.eval() + aug_params = {} + val_dataset = datasets.ETH3D(aug_params) + + out_list, epe_list = [], [] + for val_id in range(len(val_dataset)): + _, image1, image2, flow_gt, valid_gt = val_dataset[val_id] + image1 = image1[None].cuda() + image2 = image2[None].cuda() + + padder = InputPadder(image1.shape, divis_by=32) + image1, image2 = padder.pad(image1, image2) + + with autocast(enabled=mixed_prec): + _, flow_pr = model(image1, image2, iters=iters, test_mode=True) + flow_pr = padder.unpad(flow_pr.float()).cpu().squeeze(0) + assert flow_pr.shape == flow_gt.shape, (flow_pr.shape, flow_gt.shape) + epe = torch.sum((flow_pr - flow_gt)**2, dim=0).sqrt() + + epe_flattened = epe.flatten() + val = valid_gt.flatten() >= 0.5 + out = (epe_flattened > 1.0) + image_out = out[val].float().mean().item() + image_epe = epe_flattened[val].mean().item() + logging.info(f"ETH3D {val_id+1} out of {len(val_dataset)}. EPE {round(image_epe,4)} D1 {round(image_out,4)}") + epe_list.append(image_epe) + out_list.append(image_out) + + epe_list = np.array(epe_list) + out_list = np.array(out_list) + + epe = np.mean(epe_list) + d1 = 100 * np.mean(out_list) + + print("Validation ETH3D: EPE %f, D1 %f" % (epe, d1)) + return {'eth3d-epe': epe, 'eth3d-d1': d1} + + +@torch.no_grad() +def validate_kitti(model, iters=32, mixed_prec=False): + """ Peform validation using the KITTI-2015 (train) split """ + model.eval() + aug_params = {} + val_dataset = datasets.KITTI(aug_params, image_set='training') + torch.backends.cudnn.benchmark = True + + out_list, epe_list, elapsed_list = [], [], [] + for val_id in range(len(val_dataset)): + _, image1, image2, flow_gt, valid_gt = val_dataset[val_id] + image1 = image1[None].cuda() + image2 = image2[None].cuda() + + padder = InputPadder(image1.shape, divis_by=32) + image1, image2 = padder.pad(image1, image2) + + with autocast(enabled=mixed_prec): + start = time.time() + _, flow_pr = model(image1, image2, iters=iters, test_mode=True) + end = time.time() + + if val_id > 50: + elapsed_list.append(end-start) + flow_pr = padder.unpad(flow_pr).cpu().squeeze(0) + + assert flow_pr.shape == flow_gt.shape, (flow_pr.shape, flow_gt.shape) + epe = torch.sum((flow_pr - flow_gt)**2, dim=0).sqrt() + + epe_flattened = epe.flatten() + val = valid_gt.flatten() >= 0.5 + + out = (epe_flattened > 3.0) + image_out = out[val].float().mean().item() + image_epe = epe_flattened[val].mean().item() + if val_id < 9 or (val_id+1)%10 == 0: + logging.info(f"KITTI Iter {val_id+1} out of {len(val_dataset)}. EPE {round(image_epe,4)} D1 {round(image_out,4)}. Runtime: {format(end-start, '.3f')}s ({format(1/(end-start), '.2f')}-FPS)") + epe_list.append(epe_flattened[val].mean().item()) + out_list.append(out[val].cpu().numpy()) + + epe_list = np.array(epe_list) + out_list = np.concatenate(out_list) + + epe = np.mean(epe_list) + d1 = 100 * np.mean(out_list) + + avg_runtime = np.mean(elapsed_list) + + print(f"Validation KITTI: EPE {epe}, D1 {d1}, {format(1/avg_runtime, '.2f')}-FPS ({format(avg_runtime, '.3f')}s)") + return {'kitti-epe': epe, 'kitti-d1': d1} + + +@torch.no_grad() +def validate_things(model, iters=32, mixed_prec=False): + """ Peform validation using the FlyingThings3D (TEST) split """ + model.eval() + val_dataset = datasets.SceneFlowDatasets(dstype='frames_finalpass', things_test=True) + + out_list, epe_list = [], [] + for val_id in tqdm(range(len(val_dataset))): + _, image1, image2, flow_gt, valid_gt = val_dataset[val_id] + image1 = image1[None].cuda() + image2 = image2[None].cuda() + + padder = InputPadder(image1.shape, divis_by=32) + image1, image2 = padder.pad(image1, image2) + + with autocast(enabled=mixed_prec): + _, flow_pr = model(image1, image2, iters=iters, test_mode=True) + flow_pr = padder.unpad(flow_pr).cpu().squeeze(0) + assert flow_pr.shape == flow_gt.shape, (flow_pr.shape, flow_gt.shape) + epe = torch.sum((flow_pr - flow_gt)**2, dim=0).sqrt() + + epe = epe.flatten() + val = (valid_gt.flatten() >= 0.5) & (flow_gt.abs().flatten() < 192) + + out = (epe > 1.0) + epe_list.append(epe[val].mean().item()) + out_list.append(out[val].cpu().numpy()) + + epe_list = np.array(epe_list) + out_list = np.concatenate(out_list) + + epe = np.mean(epe_list) + d1 = 100 * np.mean(out_list) + + print("Validation FlyingThings: %f, %f" % (epe, d1)) + return {'things-epe': epe, 'things-d1': d1} + + +@torch.no_grad() +def validate_middlebury(model, iters=32, split='F', mixed_prec=False): + """ Peform validation using the Middlebury-V3 dataset """ + model.eval() + aug_params = {} + val_dataset = datasets.Middlebury(aug_params, split=split) + + out_list, epe_list = [], [] + for val_id in range(len(val_dataset)): + (imageL_file, _, _), image1, image2, flow_gt, valid_gt = val_dataset[val_id] + image1 = image1[None].cuda() + image2 = image2[None].cuda() + + padder = InputPadder(image1.shape, divis_by=32) + image1, image2 = padder.pad(image1, image2) + + with autocast(enabled=mixed_prec): + _, flow_pr = model(image1, image2, iters=iters, test_mode=True) + flow_pr = padder.unpad(flow_pr).cpu().squeeze(0) + + assert flow_pr.shape == flow_gt.shape, (flow_pr.shape, flow_gt.shape) + epe = torch.sum((flow_pr - flow_gt)**2, dim=0).sqrt() + + epe_flattened = epe.flatten() + val = (valid_gt.reshape(-1) >= -0.5) & (flow_gt[0].reshape(-1) > -1000) + + out = (epe_flattened > 2.0) + image_out = out[val].float().mean().item() + image_epe = epe_flattened[val].mean().item() + logging.info(f"Middlebury Iter {val_id+1} out of {len(val_dataset)}. EPE {round(image_epe,4)} D1 {round(image_out,4)}") + epe_list.append(image_epe) + out_list.append(image_out) + + epe_list = np.array(epe_list) + out_list = np.array(out_list) + + epe = np.mean(epe_list) + d1 = 100 * np.mean(out_list) + + print(f"Validation Middlebury{split}: EPE {epe}, D1 {d1}") + return {f'middlebury{split}-epe': epe, f'middlebury{split}-d1': d1} + + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument('--restore_ckpt', help="restore checkpoint", default=None) + parser.add_argument('--dataset', help="dataset for evaluation", required=True, choices=["eth3d", "kitti", "things"] + [f"middlebury_{s}" for s in 'FHQ']) + parser.add_argument('--mixed_precision', action='store_true', help='use mixed precision') + parser.add_argument('--valid_iters', type=int, default=32, help='number of flow-field updates during forward pass') + + # Architecure choices + parser.add_argument('--hidden_dims', nargs='+', type=int, default=[128]*3, help="hidden state and context dimensions") + parser.add_argument('--corr_implementation', choices=["reg", "alt", "reg_cuda", "alt_cuda"], default="reg", help="correlation volume implementation") + parser.add_argument('--shared_backbone', action='store_true', help="use a single backbone for the context and feature encoders") + parser.add_argument('--corr_levels', type=int, default=4, help="number of levels in the correlation pyramid") + parser.add_argument('--corr_radius', type=int, default=4, help="width of the correlation pyramid") + parser.add_argument('--n_downsample', type=int, default=2, help="resolution of the disparity field (1/2^K)") + parser.add_argument('--slow_fast_gru', action='store_true', help="iterate the low-res GRUs more frequently") + parser.add_argument('--n_gru_layers', type=int, default=3, help="number of hidden GRU levels") + args = parser.parse_args() + + model = torch.nn.DataParallel(RAFTStereo(args), device_ids=[0]) + + logging.basicConfig(level=logging.INFO, + format='%(asctime)s %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s') + + if args.restore_ckpt is not None: + assert args.restore_ckpt.endswith(".pth") + logging.info("Loading checkpoint...") + checkpoint = torch.load(args.restore_ckpt) + model.load_state_dict(checkpoint, strict=True) + logging.info(f"Done loading checkpoint") + + model.cuda() + model.eval() + + print(f"The model has {format(count_parameters(model)/1e6, '.2f')}M learnable parameters.") + + # The CUDA implementations of the correlation volume prevent half-precision + # rounding errors in the correlation lookup. This allows us to use mixed precision + # in the entire forward pass, not just in the GRUs & feature extractors. + use_mixed_precision = args.corr_implementation.endswith("_cuda") + + if args.dataset == 'eth3d': + validate_eth3d(model, iters=args.valid_iters, mixed_prec=use_mixed_precision) + + elif args.dataset == 'kitti': + validate_kitti(model, iters=args.valid_iters, mixed_prec=use_mixed_precision) + + elif args.dataset in [f"middlebury_{s}" for s in 'FHQ']: + validate_middlebury(model, iters=args.valid_iters, split=args.dataset[-1], mixed_prec=use_mixed_precision) + + elif args.dataset == 'things': + validate_things(model, iters=args.valid_iters, mixed_prec=use_mixed_precision) diff --git a/sampler/__init__.py b/sampler/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/sampler/sampler.cpp b/sampler/sampler.cpp new file mode 100644 index 0000000..b1ed09b --- /dev/null +++ b/sampler/sampler.cpp @@ -0,0 +1,51 @@ +#include + +#include + +// CUDA forward declarations + + +std::vector sampler_cuda_forward( + torch::Tensor volume, + torch::Tensor coords, + int radius); + +std::vector sampler_cuda_backward( + torch::Tensor volume, + torch::Tensor coords, + torch::Tensor corr_grad, + int radius); + + +#define CHECK_CUDA(x) TORCH_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor") +#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous") +#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x) + +std::vector sampler_forward( + torch::Tensor volume, + torch::Tensor coords, + int radius) { + CHECK_INPUT(volume); + CHECK_INPUT(coords); + + return sampler_cuda_forward(volume, coords, radius); +} + +std::vector sampler_backward( + torch::Tensor volume, + torch::Tensor coords, + torch::Tensor corr_grad, + int radius) { + CHECK_INPUT(volume); + CHECK_INPUT(coords); + CHECK_INPUT(corr_grad); + + auto volume_grad = sampler_cuda_backward(volume, coords, corr_grad, radius); + return {volume_grad}; +} + + +PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { + m.def("forward", &sampler_forward, "SAMPLER forward"); + m.def("backward", &sampler_backward, "SAMPLER backward"); +} \ No newline at end of file diff --git a/sampler/sampler_kernel.cu b/sampler/sampler_kernel.cu new file mode 100644 index 0000000..7dee2a8 --- /dev/null +++ b/sampler/sampler_kernel.cu @@ -0,0 +1,167 @@ +#include +#include +#include +#include +#include +#include + + +#include +#include +#include + +#define BLOCK 16 + +__forceinline__ __device__ bool within_bounds(int h, int w, int H, int W) { + return h >= 0 && h < H && w >= 0 && w < W; +} + +template +__global__ void sampler_forward_kernel( + const torch::PackedTensorAccessor32 volume, + const torch::PackedTensorAccessor32 coords, + torch::PackedTensorAccessor32 corr, + int r) +{ + // batch index + const int x = blockIdx.x * blockDim.x + threadIdx.x; + const int y = blockIdx.y * blockDim.y + threadIdx.y; + const int n = blockIdx.z; + + const int h1 = volume.size(1); + const int w1 = volume.size(2); + const int w2 = volume.size(3); + + if (!within_bounds(y, x, h1, w1)) { + return; + } + + float x0 = coords[n][0][y][x]; + float y0 = coords[n][1][y][x]; + + float dx = x0 - floor(x0); + float dy = y0 - floor(y0); + + int rd = 2*r + 1; + for (int i=0; i(floor(x0)) - r + i; + + if (within_bounds(0, x1, 1, w2)) { + scalar_t s = volume[n][y][x][x1]; + + if (i > 0) + corr[n][i-1][y][x] += s * scalar_t(dx); + + if (i < rd) + corr[n][i][y][x] += s * scalar_t((1.0f-dx)); + + } + } +} + + +template +__global__ void sampler_backward_kernel( + const torch::PackedTensorAccessor32 coords, + const torch::PackedTensorAccessor32 corr_grad, + torch::PackedTensorAccessor32 volume_grad, + int r) +{ + // batch index + const int x = blockIdx.x * blockDim.x + threadIdx.x; + const int y = blockIdx.y * blockDim.y + threadIdx.y; + const int n = blockIdx.z; + + const int h1 = volume_grad.size(1); + const int w1 = volume_grad.size(2); + const int w2 = volume_grad.size(3); + + if (!within_bounds(y, x, h1, w1)) { + return; + } + + float x0 = coords[n][0][y][x]; + float y0 = coords[n][1][y][x]; + + float dx = x0 - floor(x0); + float dy = y0 - floor(y0); + + int rd = 2*r + 1; + for (int i=0; i(floor(x0)) - r + i; + + if (within_bounds(0, x1, 1, w2)) { + scalar_t g = 0.0; + + if (i > 0) + g += corr_grad[n][i-1][y][x] * scalar_t(dx); + + if (i < rd) + g += corr_grad[n][i][y][x] * scalar_t((1.0f-dx)); + + volume_grad[n][y][x][x1] += g; + } + } +} + +std::vector sampler_cuda_forward( + torch::Tensor volume, + torch::Tensor coords, + int radius) +{ + const auto batch_size = volume.size(0); + const auto ht = volume.size(1); + const auto wd = volume.size(2); + + const dim3 blocks((wd + BLOCK - 1) / BLOCK, + (ht + BLOCK - 1) / BLOCK, + batch_size); + + const dim3 threads(BLOCK, BLOCK); + + auto opts = volume.options(); + torch::Tensor corr = torch::zeros( + {batch_size, 2*radius+1, ht, wd}, opts); + + AT_DISPATCH_FLOATING_TYPES_AND_HALF(volume.type(), "sampler_forward_kernel", ([&] { + sampler_forward_kernel<<>>( + volume.packed_accessor32(), + coords.packed_accessor32(), + corr.packed_accessor32(), + radius); + })); + + return {corr}; + +} + +std::vector sampler_cuda_backward( + torch::Tensor volume, + torch::Tensor coords, + torch::Tensor corr_grad, + int radius) +{ + const auto batch_size = volume.size(0); + const auto ht = volume.size(1); + const auto wd = volume.size(2); + + auto volume_grad = torch::zeros_like(volume); + + const dim3 blocks((wd + BLOCK - 1) / BLOCK, + (ht + BLOCK - 1) / BLOCK, + batch_size); + + const dim3 threads(BLOCK, BLOCK); + + + AT_DISPATCH_FLOATING_TYPES_AND_HALF(volume.type(), "sampler_backward_kernel", ([&] { + sampler_backward_kernel<<>>( + coords.packed_accessor32(), + corr_grad.packed_accessor32(), + volume_grad.packed_accessor32(), + radius); + })); + + return {volume_grad}; +} + diff --git a/sampler/setup.py b/sampler/setup.py new file mode 100644 index 0000000..51843ea --- /dev/null +++ b/sampler/setup.py @@ -0,0 +1,28 @@ +from setuptools import setup +from torch.utils.cpp_extension import BuildExtension, CUDAExtension + +extra_compile_flags = {} +gencodes = ['-arch=sm_50', + '-gencode', 'arch=compute_50,code=sm_50', + '-gencode', 'arch=compute_52,code=sm_52', + '-gencode', 'arch=compute_60,code=sm_60', + '-gencode', 'arch=compute_61,code=sm_61', + '-gencode', 'arch=compute_70,code=sm_70', + '-gencode', 'arch=compute_75,code=sm_75', + '-gencode', 'arch=compute_75,code=compute_75',] + +# extra_compile_flags['nvcc'] = gencodes + +setup( + name='corr_sampler', + ext_modules=[ + CUDAExtension('corr_sampler', [ + 'sampler.cpp', 'sampler_kernel.cu', + ], + extra_compile_args=extra_compile_flags) + ], + cmdclass={ + 'build_ext': BuildExtension + }) + + diff --git a/train_stereo.py b/train_stereo.py new file mode 100644 index 0000000..7c3897f --- /dev/null +++ b/train_stereo.py @@ -0,0 +1,258 @@ +from __future__ import print_function, division + +import argparse +import logging +import numpy as np +from pathlib import Path +from tqdm import tqdm + +from torch.utils.tensorboard import SummaryWriter +import torch +import torch.nn as nn +import torch.optim as optim +from core.raft_stereo import RAFTStereo + +from evaluate_stereo import * +import core.stereo_datasets as datasets + +try: + from torch.cuda.amp import GradScaler +except: + # dummy GradScaler for PyTorch < 1.6 + class GradScaler: + def __init__(self): + pass + def scale(self, loss): + return loss + def unscale_(self, optimizer): + pass + def step(self, optimizer): + optimizer.step() + def update(self): + pass + + +def sequence_loss(flow_preds, flow_gt, valid, loss_gamma=0.9, max_flow=700): + """ Loss function defined over sequence of flow predictions """ + + n_predictions = len(flow_preds) + assert n_predictions >= 1 + flow_loss = 0.0 + + # exlude invalid pixels and extremely large diplacements + mag = torch.sum(flow_gt**2, dim=1).sqrt() + + # exclude extremly large displacements + valid = ((valid >= 0.5) & (mag < max_flow)).unsqueeze(1) + assert valid.shape == flow_gt.shape, [valid.shape, flow_gt.shape] + assert not torch.isinf(flow_gt[valid.bool()]).any() + + for i in range(n_predictions): + assert not torch.isnan(flow_preds[i]).any() and not torch.isinf(flow_preds[i]).any() + # We adjust the loss_gamma so it is consistent for any number of RAFT-Stereo iterations + adjusted_loss_gamma = loss_gamma**(15/(n_predictions - 1)) + i_weight = adjusted_loss_gamma**(n_predictions - i - 1) + i_loss = (flow_preds[i] - flow_gt).abs() + assert i_loss.shape == valid.shape, [i_loss.shape, valid.shape, flow_gt.shape, flow_preds[i].shape] + flow_loss += i_weight * i_loss[valid.bool()].mean() + + epe = torch.sum((flow_preds[-1] - flow_gt)**2, dim=1).sqrt() + epe = epe.view(-1)[valid.view(-1)] + + metrics = { + 'epe': epe.mean().item(), + '1px': (epe < 1).float().mean().item(), + '3px': (epe < 3).float().mean().item(), + '5px': (epe < 5).float().mean().item(), + } + + return flow_loss, metrics + + +def fetch_optimizer(args, model): + """ Create the optimizer and learning rate scheduler """ + optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.wdecay, eps=1e-8) + + scheduler = optim.lr_scheduler.OneCycleLR(optimizer, args.lr, args.num_steps+100, + pct_start=0.01, cycle_momentum=False, anneal_strategy='linear') + + return optimizer, scheduler + + +class Logger: + + SUM_FREQ = 100 + + def __init__(self, model, scheduler): + self.model = model + self.scheduler = scheduler + self.total_steps = 0 + self.running_loss = {} + self.writer = SummaryWriter(log_dir='runs') + + def _print_training_status(self): + metrics_data = [self.running_loss[k]/Logger.SUM_FREQ for k in sorted(self.running_loss.keys())] + training_str = "[{:6d}, {:10.7f}] ".format(self.total_steps+1, self.scheduler.get_last_lr()[0]) + metrics_str = ("{:10.4f}, "*len(metrics_data)).format(*metrics_data) + + # print the training status + logging.info(f"Training Metrics ({self.total_steps}): {training_str + metrics_str}") + + if self.writer is None: + self.writer = SummaryWriter(log_dir='runs') + + for k in self.running_loss: + self.writer.add_scalar(k, self.running_loss[k]/Logger.SUM_FREQ, self.total_steps) + self.running_loss[k] = 0.0 + + def push(self, metrics): + self.total_steps += 1 + + for key in metrics: + if key not in self.running_loss: + self.running_loss[key] = 0.0 + + self.running_loss[key] += metrics[key] + + if self.total_steps % Logger.SUM_FREQ == Logger.SUM_FREQ-1: + self._print_training_status() + self.running_loss = {} + + def write_dict(self, results): + if self.writer is None: + self.writer = SummaryWriter(log_dir='runs') + + for key in results: + self.writer.add_scalar(key, results[key], self.total_steps) + + def close(self): + self.writer.close() + + +def train(args): + + model = nn.DataParallel(RAFTStereo(args)) + print("Parameter Count: %d" % count_parameters(model)) + + train_loader = datasets.fetch_dataloader(args) + optimizer, scheduler = fetch_optimizer(args, model) + total_steps = 0 + logger = Logger(model, scheduler) + + if args.restore_ckpt is not None: + assert args.restore_ckpt.endswith(".pth") + logging.info("Loading checkpoint...") + checkpoint = torch.load(args.restore_ckpt) + model.load_state_dict(checkpoint, strict=True) + logging.info(f"Done loading checkpoint") + + model.cuda() + model.train() + model.module.freeze_bn() # We keep BatchNorm frozen + + validation_frequency = 10000 + + scaler = GradScaler(enabled=args.mixed_precision) + + should_keep_training = True + global_batch_num = 0 + while should_keep_training: + + for i_batch, (_, *data_blob) in enumerate(tqdm(train_loader)): + optimizer.zero_grad() + image1, image2, flow, valid = [x.cuda() for x in data_blob] + + assert model.training + flow_predictions = model(image1, image2, iters=args.train_iters) + assert model.training + + loss, metrics = sequence_loss(flow_predictions, flow, valid) + logger.writer.add_scalar("live_loss", loss.item(), global_batch_num) + logger.writer.add_scalar(f'learning_rate', optimizer.param_groups[0]['lr'], global_batch_num) + global_batch_num += 1 + scaler.scale(loss).backward() + scaler.unscale_(optimizer) + torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) + + scaler.step(optimizer) + scheduler.step() + scaler.update() + + logger.push(metrics) + + if total_steps % validation_frequency == validation_frequency - 1: + save_path = Path('checkpoints/%d_%s.pth' % (total_steps + 1, args.name)) + logging.info(f"Saving file {save_path.absolute()}") + torch.save(model.state_dict(), save_path) + + results = validate_things(model.module, iters=args.valid_iters) + + logger.write_dict(results) + + model.train() + model.module.freeze_bn() + + total_steps += 1 + + if total_steps > args.num_steps: + should_keep_training = False + break + + if len(train_loader) >= 10000: + save_path = Path('checkpoints/%d_epoch_%s.pth.gz' % (total_steps + 1, args.name)) + logging.info(f"Saving file {save_path}") + torch.save(model.state_dict(), save_path) + + print("FINISHED TRAINING") + logger.close() + PATH = 'checkpoints/%s.pth' % args.name + torch.save(model.state_dict(), PATH) + + return PATH + + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument('--name', default='raft-stereo', help="name your experiment") + parser.add_argument('--restore_ckpt', help="restore checkpoint") + parser.add_argument('--mixed_precision', action='store_true', help='use mixed precision') + + # Training parameters + parser.add_argument('--batch_size', type=int, default=6, help="batch size used during training.") + parser.add_argument('--train_datasets', nargs='+', default=['sceneflow'], help="training datasets.") + parser.add_argument('--lr', type=float, default=0.0002, help="max learning rate.") + parser.add_argument('--num_steps', type=int, default=100000, help="length of training schedule.") + parser.add_argument('--image_size', type=int, nargs='+', default=[320, 720], help="size of the random image crops used during training.") + parser.add_argument('--train_iters', type=int, default=16, help="number of updates to the disparity field in each forward pass.") + parser.add_argument('--wdecay', type=float, default=.00001, help="Weight decay in optimizer.") + + # Validation parameters + parser.add_argument('--valid_iters', type=int, default=32, help='number of flow-field updates during validation forward pass') + + # Architecure choices + parser.add_argument('--corr_implementation', choices=["reg", "alt", "reg_cuda", "alt_cuda"], default="reg", help="correlation volume implementation") + parser.add_argument('--shared_backbone', action='store_true', help="use a single backbone for the context and feature encoders") + parser.add_argument('--corr_levels', type=int, default=4, help="number of levels in the correlation pyramid") + parser.add_argument('--corr_radius', type=int, default=4, help="width of the correlation pyramid") + parser.add_argument('--n_downsample', type=int, default=2, help="resolution of the disparity field (1/2^K)") + parser.add_argument('--slow_fast_gru', action='store_true', help="iterate the low-res GRUs more frequently") + parser.add_argument('--n_gru_layers', type=int, default=3, help="number of hidden GRU levels") + parser.add_argument('--hidden_dims', nargs='+', type=int, default=[128]*3, help="hidden state and context dimensions") + + # Data augmentation + parser.add_argument('--img_gamma', type=float, nargs='+', default=None, help="gamma range") + parser.add_argument('--saturation_range', type=float, nargs='+', default=None, help='color saturation') + parser.add_argument('--do_flip', default=False, choices=['h', 'v'], help='flip the images horizontally or vertically') + parser.add_argument('--spatial_scale', type=float, nargs='+', default=[0, 0], help='re-scale the images randomly') + parser.add_argument('--noyjitter', action='store_true', help='don\'t simulate imperfect rectification') + args = parser.parse_args() + + torch.manual_seed(1234) + np.random.seed(1234) + + logging.basicConfig(level=logging.INFO, + format='%(asctime)s %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s') + + Path("checkpoints").mkdir(exist_ok=True, parents=True) + + train(args) \ No newline at end of file