-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathIZF_union.v
116 lines (99 loc) · 4.02 KB
/
IZF_union.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
(* This program is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1 *)
(* of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU Lesser General Public *)
(* License along with this program; if not, write to the Free *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA *)
Require Import IZF_logic.
Require Import IZF_base.
Definition UNION (X : Typ1) (A : Rel X) (a : X) (z' z : opt X) :=
forall E : Prop,
(forall x x' : X,
eq (opt X) z' (some X x') -> eq (opt X) z (some X x) -> A x' x -> E) ->
(forall x x' : X,
eq (opt X) z' (some X x') -> eq (opt X) z (none X) -> A x' x -> A x a -> E) ->
E.
Lemma UNION_in :
forall (X : Typ1) (A : Rel X) (a x x' : X),
A x' x -> UNION X A a (some X x') (some X x).
Proof
fun X A a x x' H E e _ =>
e x x' (eq_refl (opt X) (some X x')) (eq_refl (opt X) (some X x)) H.
Lemma UNION_rt :
forall (X : Typ1) (A : Rel X) (a x x' : X),
A x' x -> A x a -> UNION X A a (some X x') (none X).
Proof
fun X A a x x' H1 H2 E _ e =>
e x x' (eq_refl (opt X) (some X x')) (eq_refl (opt X) (none X)) H1 H2.
Lemma UNION_deloc :
forall (X : Typ1) (A : Rel X) (a : X),
deloc X A (opt X) (UNION X A a) (some X).
Proof.
intros X A a; unfold deloc in |- *; apply and_intro.
(* Deloc 1 *)
exact (UNION_in X A a).
(* Deloc 2 *)
intros x y' H; apply H; clear H. (* Case distinction *)
(* Deloc 2, case 1 *)
intros x0 x' H1 H2 H3; apply ex2_intro with x'.
apply (eq_sym _ _ _ (eq_some_some _ _ _ H2)); assumption.
assumption.
(* Deloc 2, case 2 (absurd) *)
intros x0 x' H1 H2 H3 H4; apply (eq_some_none _ _ H2).
Qed.
Lemma UNION_eqv :
forall (X : Typ1) (A : Rel X) (a x : X),
EQV X A x (opt X) (UNION X A a) (some X x).
Proof.
intros X A a x; apply EQV_deloc; apply UNION_deloc.
Qed.
Lemma union_intro :
forall (X : Typ1) (A : Rel X) (a : X) (Y : Typ1) (B : Rel Y)
(b : Y) (Z : Typ1) (C : Rel Z) (c : Z),
ELT Y B b Z C c ->
ELT Z C c X A a -> ELT Y B b (opt X) (UNION X A a) (none X).
Proof.
intros X A a Y B b Z C c H H'.
apply H'; clear H'; intros x H1 H2.
apply (ELT_compat_r _ _ _ _ _ _ _ _ _ H H2); clear H; intros x' H3 H4.
apply ELT_intro with (some X x'). apply UNION_rt with x; assumption.
apply EQV_trans with X A x'; [ assumption | apply UNION_eqv ].
Qed.
Lemma union_elim :
forall (X : Typ1) (A : Rel X) (a : X) (Y : Typ1) (B : Rel Y) (b : Y),
ELT Y B b (opt X) (UNION X A a) (none X) ->
exG (fun Z C c => and (ELT Y B b Z C c) (ELT Z C c X A a)).
Proof.
intros X A a Y B b H; apply H; clear H; intros z H H1.
apply H; clear H. (* Case distinction *)
(* Case 1 (absurd) *)
intros x x' H2 H3 H4; apply (eq_none_some _ _ H3).
(* Case 2 *)
intros x x' H2 H3 H4 H5.
apply exG_intro with (opt X) (UNION X A a) (some X x).
apply and_intro. apply ELT_intro with (some X x').
apply UNION_in; assumption. apply H2; assumption.
apply ELT_compat_l with X A x. apply EQV_sym; apply UNION_eqv.
apply ELT_direct; assumption.
Qed.
Lemma union :
forall (X : Typ1) (A : Rel X) (a : X) (Y : Typ1) (B : Rel Y) (b : Y),
iff (ELT Y B b (opt X) (UNION X A a) (none X))
(exG (fun Z C c => and (ELT Y B b Z C c) (ELT Z C c X A a))).
Proof.
intros X A a Y B b; unfold iff in |- *; apply and_intro.
(* Direct implication *)
intro; apply union_elim; assumption.
(* Converse implication *)
intro H; apply H; clear H; intros Z C c H.
apply H; clear H; intros H1 H2.
apply union_intro with Z C c; assumption.
Qed.