-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathIZF_select.v
127 lines (108 loc) · 4.34 KB
/
IZF_select.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
(* This program is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1 *)
(* of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU Lesser General Public *)
(* License along with this program; if not, write to the Free *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA *)
Require Import IZF_logic.
Require Import IZF_base.
Definition PRED := forall X : Typ1, Rel X -> X -> Prop.
Definition Compat (P : PRED) : Prop :=
forall (X : Typ1) (A : Rel X) (a : X) (Y : Typ1) (B : Rel Y) (b : Y),
EQV X A a Y B b -> P X A a -> P Y B b.
Definition SELECT (X : Typ1) (A : Rel X) (a : X) (P : PRED) :
Rel (opt X) :=
fun z' z : opt X =>
forall E : Prop,
(forall x x' : X,
eq (opt X) z (some X x) -> eq (opt X) z' (some X x') -> A x' x -> E) ->
(forall x' : X,
eq (opt X) z' (some X x') ->
eq (opt X) z (none X) -> A x' a -> P X A x' -> E) -> E.
Lemma SELECT_in :
forall (X : Typ1) (A : Rel X) (a : X) (P : PRED) (x x' : X),
A x' x -> SELECT X A a P (some X x') (some X x).
Proof
fun X A a P x x' H E e _ =>
e x x' (eq_refl (opt X) (some X x)) (eq_refl (opt X) (some X x')) H.
Lemma SELECT_rt :
forall (X : Typ1) (A : Rel X) (a : X) (P : PRED) (x' : X),
A x' a -> P X A x' -> SELECT X A a P (some X x') (none X).
Proof
fun X A a P x' H1 H2 E _ e =>
e x' (eq_refl (opt X) (some X x')) (eq_refl (opt X) (none X)) H1 H2.
Lemma SELECT_deloc :
forall (X : Typ1) (A : Rel X) (a : X) (P : PRED),
deloc X A (opt X) (SELECT X A a P) (some X).
Proof.
intros X A a P; unfold deloc in |- *; apply and_intro.
(* Deloc 1 *)
exact (SELECT_in X A a P).
(* Deloc 2 (case distinction *)
intros x z' H; apply H; clear H.
(* Deloc 2, case 1 *)
intros x0 x' H1 H2 H3; apply ex2_intro with x'.
apply (eq_sym _ _ _ (eq_some_some X x x0 H1)); assumption.
assumption.
(* Deloc 2, case 2 (absurd) *)
intros x' H1 H2 H3 H4; apply (eq_some_none X x H2).
Qed.
Lemma SELECT_eqv :
forall (X : Typ1) (A : Rel X) (a : X) (P : PRED) (x : X),
EQV X A x (opt X) (SELECT X A a P) (some X x).
Proof.
intros X A a P x; apply EQV_deloc; apply SELECT_deloc.
Qed.
Lemma selection_intro :
forall (X : Typ1) (A : Rel X) (a : X) (P : PRED),
Compat P ->
forall (Y : Typ1) (B : Rel Y) (b : Y),
ELT Y B b X A a -> P Y B b -> ELT Y B b (opt X) (SELECT X A a P) (none X).
Proof.
intros X A a P H1 Y B b H H2; apply H; clear H; intros x' H3 H4.
apply ELT_intro with (some X x').
apply SELECT_rt; [ assumption | exact (H1 _ _ _ _ _ _ H4 H2) ].
apply EQV_trans with X A x'; [ assumption | apply SELECT_eqv ].
Qed.
Lemma selection_elim :
forall (X : Typ1) (A : Rel X) (a : X) (P : PRED),
Compat P ->
forall (Y : Typ1) (B : Rel Y) (b : Y),
ELT Y B b (opt X) (SELECT X A a P) (none X) ->
and (ELT Y B b X A a) (P Y B b).
Proof.
intros X A a P H1 Y B b H; apply H; clear H.
intros z' H H2; apply H; clear H.
(* Case 1 (absurd) *)
intros x x' H3 H4 H5; apply (eq_none_some X x H3).
(* Case 2 *)
intros x' H3 H4 H5 H6; apply and_intro.
(* Case 2, first conclusion *)
apply ELT_intro with x'. assumption.
apply EQV_trans with (opt X) (SELECT X A a P) z'. assumption.
apply (eq_sym _ _ _ H3); apply EQV_sym; apply SELECT_eqv.
(* Case 2, second conclusion *)
apply H1 with X A x'.
apply EQV_trans with (opt X) (SELECT X A a P) z'.
apply (eq_sym _ _ _ H3); apply SELECT_eqv.
apply EQV_sym; assumption. assumption.
Qed.
Theorem selection :
forall (X : Typ1) (A : Rel X) (a : X) (P : PRED),
Compat P ->
forall (Y : Typ1) (B : Rel Y) (b : Y),
iff (ELT Y B b (opt X) (SELECT X A a P) (none X))
(and (ELT Y B b X A a) (P Y B b)).
Proof.
intros X A a P H1 Y B b; unfold iff in |- *; apply and_intro.
intro; apply selection_elim; assumption.
intro H; apply H; intros; apply selection_intro; assumption.
Qed.