-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathZUP.v
233 lines (228 loc) · 6.9 KB
/
ZUP.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
(* This program is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1 *)
(* of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU Lesser General Public *)
(* License along with this program; if not, write to the Free *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA *)
Set Automatic Coercions Import.
Set Implicit Arguments.
Unset Strict Implicit.
Require Export Z_group_facts.
(** Title "Universal property of integers." *)
Section Zup1.
Variable R : RING.
Hint Resolve Z_to_group_nat_eq_pos: algebra.
Hint Resolve Z_to_group_nat_unit: algebra.
Hint Resolve Zl1: algebra.
Hint Resolve Zl2: algebra.
Lemma nat_to_group_mult :
forall n m : nat,
Equal (nat_to_group (ring_unit R) (n * m))
(ring_mult (nat_to_group (ring_unit R) n) (nat_to_group (ring_unit R) m)).
simple induction n; simpl in |- *.
auto with algebra.
intros n0 H' m; try assumption.
apply
Trans
with
(sgroup_law R (nat_to_group (ring_unit R) m)
(nat_to_group (ring_unit R) (n0 * m))); auto with algebra.
apply
Trans
with
(sgroup_law R
(ring_mult (nat_to_group (ring_unit R) n0)
(nat_to_group (ring_unit R) m))
(ring_mult (ring_unit R) (nat_to_group (ring_unit R) m)));
auto with algebra.
apply
Trans
with
(sgroup_law R
(ring_mult (nat_to_group (ring_unit R) n0)
(nat_to_group (ring_unit R) m)) (nat_to_group (ring_unit R) m));
auto with algebra.
apply
Trans
with
(sgroup_law R (nat_to_group (ring_unit R) m)
(ring_mult (nat_to_group (ring_unit R) n0)
(nat_to_group (ring_unit R) m))); auto with algebra.
Qed.
Hint Resolve nat_to_group_mult: algebra.
Hint Resolve Zl3: algebra.
Definition Z_to_ring : Hom (ZZ:RING) R.
apply
(BUILD_HOM_RING (Ring1:=ZZ:RING) (Ring2:=R) (ff:=Z_to_group (ring_unit R))).
auto with algebra.
auto with algebra.
auto with algebra.
simpl in |- *.
intros x y; try assumption.
apply Trans with (Z_to_group_nat_fun (ring_unit R) (ring_mult (x:ZZ) y));
auto with algebra.
apply
Trans
with
(ring_mult (Z_to_group_nat_fun (ring_unit R) x)
(Z_to_group_nat_fun (ring_unit R) y)); auto with algebra.
elim x; simpl in |- *; unfold ring_mult at 1 in |- *; simpl in |- *; intros.
apply
Trans with (ring_mult (monoid_unit R) (Z_to_group_nat_fun (ring_unit R) y));
auto with algebra.
apply Trans with (monoid_unit R); auto with algebra.
elim y; simpl in |- *; intros.
apply Trans with (monoid_unit R); auto with algebra.
apply
Trans
with
(ring_mult (Z_to_group_nat_fun (ring_unit R) (Zpos p)) (monoid_unit R));
auto with algebra.
apply
Trans
with
(nat_to_group (ring_unit R)
(nat_of_P
(pos_abs
(ax3
((fun (x : positive) (_ : positive -> positive)
(y : positive) => (x * y)%positive) p
(fun y : positive => y) p0)))));
auto with algebra.
simpl in |- *.
rewrite
(fun (x y : positive) (_ : positive -> positive) =>
nat_of_P_mult_morphism x y).
apply
Trans
with
(ring_mult (nat_to_group (ring_unit R) (nat_of_P (pos_abs (ax3 p))))
(nat_to_group (ring_unit R) (nat_of_P (pos_abs (ax3 p0)))));
auto with algebra.
apply
Trans
with
(group_inverse R
(nat_to_group (ring_unit R)
(nat_of_P
(pos_abs
(ax3
((fun (x : positive) (_ : positive -> positive)
(y : positive) => (x * y)%positive) p
(fun y : positive => y) p0))))));
auto with algebra.
simpl in |- *.
rewrite
(fun (x y : positive) (_ : positive -> positive) =>
nat_of_P_mult_morphism x y).
apply
Trans
with
(ring_mult (nat_to_group (ring_unit R) (nat_of_P (pos_abs (ax3 p))))
(group_inverse R
(nat_to_group (ring_unit R) (nat_of_P (pos_abs (ax3 p0))))));
auto with algebra.
simpl in |- *.
apply
Trans
with
(group_inverse R
(ring_mult (nat_to_group (ring_unit R) (nat_of_P p))
(nat_to_group (ring_unit R) (nat_of_P p0))));
auto with algebra.
elim y; simpl in |- *; intros.
apply Trans with (monoid_unit R); auto with algebra.
apply
Trans
with
(ring_mult (Z_to_group_nat_fun (ring_unit R) (Zneg p)) (monoid_unit R));
auto with algebra.
apply
Trans
with
(group_inverse R
(nat_to_group (ring_unit R)
(nat_of_P
(pos_abs
(ax3
((fun (x : positive) (_ : positive -> positive)
(y : positive) => (x * y)%positive) p
(fun y : positive => y) p0))))));
auto with algebra.
simpl in |- *.
rewrite
(fun (x y : positive) (_ : positive -> positive) =>
nat_of_P_mult_morphism x y).
apply
Trans
with
(ring_mult
(group_inverse R
(nat_to_group (ring_unit R) (nat_of_P (pos_abs (ax3 p)))))
(nat_to_group (ring_unit R) (nat_of_P (pos_abs (ax3 p0)))));
auto with algebra.
simpl in |- *.
apply
Trans
with
(group_inverse R
(ring_mult (nat_to_group (ring_unit R) (nat_of_P p))
(nat_to_group (ring_unit R) (nat_of_P p0))));
auto with algebra.
apply
Trans
with
(nat_to_group (ring_unit R)
(nat_of_P
(pos_abs
(ax3
((fun (x : positive) (_ : positive -> positive)
(y : positive) => (x * y)%positive) p
(fun y : positive => y) p0)))));
auto with algebra.
simpl in |- *.
rewrite
(fun (x y : positive) (_ : positive -> positive) =>
nat_of_P_mult_morphism x y).
apply
Trans
with
(ring_mult
(group_inverse R
(nat_to_group (ring_unit R) (nat_of_P (pos_abs (ax3 p)))))
(group_inverse R
(nat_to_group (ring_unit R) (nat_of_P (pos_abs (ax3 p0))))));
auto with algebra.
apply
Trans
with
(ring_mult (nat_to_group (ring_unit R) (nat_of_P p))
(nat_to_group (ring_unit R) (nat_of_P p0)));
auto with algebra.
simpl in |- *.
apply
Trans
with
(group_inverse R
(ring_mult (nat_to_group (ring_unit R) (nat_of_P p))
(group_inverse R (nat_to_group (ring_unit R) (nat_of_P p0)))));
auto with algebra.
apply
Trans
with
(group_inverse R
(group_inverse R
(ring_mult (nat_to_group (ring_unit R) (nat_of_P p))
(nat_to_group (ring_unit R) (nat_of_P p0)))));
auto with algebra.
simpl in |- *; auto with algebra.
Defined.
End Zup1.