-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathParts.v
420 lines (369 loc) · 13.2 KB
/
Parts.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
(* This program is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1 *)
(* of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU Lesser General Public *)
(* License along with this program; if not, write to the Free *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA *)
Set Implicit Arguments.
Unset Strict Implicit.
Require Export Sets.
(** Title "Parts of a set" *)
Comments
"We define here the set of parts of a set, inclusion, union of a part,".
Comments
"and we prove that there is no surjection from a set in its part set".
Section Subtype.
Comments "In Coq type theory, there is no primitive notion of subtype".
Comments "Then we have to define such a notion".
Variable E : Setoid.
Variable F : Type.
Variable i : F -> E.
Comments "We have implicitely defined a subset of" E "which is the image of"
i ".".
Comments "As a setoid, this subset has" F
" as carrier, and we identify two elements of" F
"which have the same image by" i ":".
Definition subtype_image_equal (x y : F) : Prop := Equal (i x) (i y).
Lemma subtype_image_equiv : equivalence subtype_image_equal.
red in |- *.
split; [ try assumption | idtac ].
red in |- *.
unfold subtype_image_equal in |- *; unfold app_rel in |- *; simpl in |- *;
auto with algebra.
red in |- *.
split; [ try assumption | idtac ].
red in |- *.
unfold subtype_image_equal in |- *; unfold app_rel in |- *; simpl in |- *;
auto with algebra.
intros x y z H' H'0; try assumption.
apply Trans with (i y); auto with algebra.
red in |- *.
unfold subtype_image_equal in |- *; unfold app_rel in |- *; simpl in |- *;
auto with algebra.
Qed.
Definition subtype_image_set : Setoid := Build_Setoid subtype_image_equiv.
End Subtype.
Section Part_type.
Comments "We define now a general structure for this kind of subset:".
Variable E : Setoid.
Record subtype_image : Type :=
{subtype_image_carrier : Type;
subtype_image_inj :> subtype_image_carrier -> E}.
Definition set_of_subtype_image (S : subtype_image) :=
subtype_image_set (subtype_image_inj (s:=S)).
Comments "Parts of" E "will be nothing more than predicates on" E
" which are compatible with equality:".
Definition pred_compatible (P : E -> Prop) : Prop :=
forall x y : E, P x -> Equal y x -> (P y:Prop).
Record Predicate : Type :=
{Pred_fun : E -> Prop; Pred_compatible_prf : pred_compatible Pred_fun:Prop}.
Variable P : Predicate.
Comments "The type of elements of the subset defined by" P
"is the following:".
Record subtype : Type :=
{subtype_elt : E; subtype_prf : Pred_fun P subtype_elt:Prop}.
Comments "Then elements of subsets are composed of an element of" E
"and a proof that they verify the predicate" "given by" P.
Comments "We can now define the subset of" E "defined by the predicate" P ":".
Definition part :=
Build_subtype_image (subtype_image_carrier:=subtype) subtype_elt.
End Part_type.
Comments "We can see a subset as a set with these coercions:".
Coercion set_of_subtype_image : subtype_image >-> Setoid.
Coercion part : Predicate >-> subtype_image.
Comments "We define" (in_part x A) "for elements of" E ":".
Definition in_part (E : Setoid) (x : E) (A : Predicate E) := Pred_fun A x.
Section Part_set.
Variable E : Setoid.
Comments "The equality between parts of" E ":".
Definition eq_part (A B : Predicate E) : Prop :=
forall x : E, (in_part x A -> in_part x B) /\ (in_part x B -> in_part x A).
Let eq_part_equiv : equivalence eq_part.
red in |- *.
split; [ try assumption | idtac ].
red in |- *.
unfold eq_part, app_rel in |- *; simpl in |- *.
intuition.
red in |- *.
split; [ try assumption | idtac ].
red in |- *.
unfold eq_part, app_rel in |- *; simpl in |- *.
intros x y z H' H'0 x0; try assumption.
elim (H'0 x0); intros H'2 H'3; try exact H'2.
elim (H' x0); intros H'1 H'4; try exact H'1.
intuition.
red in |- *.
unfold eq_part, app_rel in |- *; simpl in |- *.
intros x y H' x0; try assumption.
elim (H' x0); intros H'2 H'3; try exact H'2.
intuition.
Qed.
Comments "We define the set" (part_set E) "of all parts of" E
", with its equality:".
Definition part_set : Setoid := Build_Setoid eq_part_equiv.
Comments "The empty part" (empty E) ":".
Hint Unfold pred_compatible: algebra.
Definition empty : part_set.
apply (Build_Predicate (E:=E) (Pred_fun:=fun x : E => False)).
auto with algebra.
Defined.
Comments "And the full part:".
Definition full : part_set.
apply (Build_Predicate (E:=E) (Pred_fun:=fun x : E => True)).
auto with algebra.
Defined.
End Part_set.
Hint Unfold pred_compatible: algebra.
Section Inclusion.
Variable E : Setoid.
Comments "The relation of belonging is compatible with equality:".
Lemma in_part_comp_l :
forall (A : part_set E) (x y : E), in_part x A -> Equal y x -> in_part y A.
intros A; try assumption.
exact (Pred_compatible_prf (E:=E) (p:=A)).
Qed.
Lemma in_part_comp_r :
forall (x : E) (A B : part_set E), in_part x A -> Equal A B -> in_part x B.
simpl in |- *; unfold eq_part in |- *.
intros x A B H' H'0; try assumption.
elim (H'0 x).
intuition.
Qed.
Lemma empty_prop : forall x : E, ~ in_part x (empty E).
unfold not in |- *; auto with algebra.
Qed.
Hint Resolve empty_prop: algebra.
Lemma full_prop : forall x : E, in_part x (full E).
unfold full in |- *; simpl in |- *; auto with algebra.
Qed.
Hint Resolve full_prop: algebra.
Definition full_to_set : MAP (full E) E.
apply (Build_Map (Ap:=fun x : full E => full E x)).
red in |- *.
intros x y; try assumption.
elim x.
elim y.
simpl in |- *.
unfold subtype_image_equal in |- *.
simpl in |- *; auto with algebra.
Defined.
Definition set_to_full : MAP E (full E).
apply
(Build_Map (A:=E) (B:=full E)
(Ap:=fun x : E =>
Build_subtype (E:=E) (P:=full E) (subtype_elt:=x) (full_prop x))).
red in |- *.
simpl in |- *; auto with algebra.
Defined.
Lemma set_full_set : Equal (comp_map_map full_to_set set_to_full) (Id E).
simpl in |- *; auto with algebra.
red in |- *.
simpl in |- *; auto with algebra.
Qed.
Lemma full_set_full :
Equal (comp_map_map set_to_full full_to_set) (Id (full E)).
simpl in |- *; auto with algebra.
red in |- *.
simpl in |- *; auto with algebra.
intros x; try assumption.
elim x.
simpl in |- *; auto with algebra.
intros subtype_elt' subtype_prf'; red in |- *.
simpl in |- *; auto with algebra.
Qed.
Comments "The inclusion of parts:".
Definition included (A B : part_set E) : Prop :=
forall x : E, in_part x A -> in_part x B.
Comments "The relation of inclusion is an order relation:".
Lemma included_refl : forall A : part_set E, included A A.
simpl in |- *; unfold included in |- *; auto with algebra.
Qed.
Hint Resolve included_refl: algebra.
Lemma included_antisym :
forall A B : part_set E, included A B -> included B A -> Equal A B.
simpl in |- *; unfold eq_part, included in |- *; auto with algebra.
Qed.
Lemma included_trans :
forall A B C : part_set E, included A B -> included B C -> included A C.
simpl in |- *; unfold included in |- *; auto with algebra.
Qed.
Comments "The inclusion relation is compatible with equality:".
Lemma included_comp :
forall A A' B B' : part_set E,
Equal A A' -> Equal B B' -> included A B -> included A' B'.
simpl in |- *; unfold eq_part, included in |- *.
intros A A' B B' H' H'0 H'1 x H'2; try assumption.
elim (H'0 x); intros H'4 H'5; apply H'4.
lapply (H'1 x); [ intros H'6; apply H'6 | idtac ].
elim (H' x); intros H'6 H'7; apply H'7; auto with algebra.
Qed.
Lemma eq_part_included : forall A B : part_set E, Equal A B -> included A B.
simpl in |- *; unfold eq_part, included in |- *.
intros A B H' x H'0; try assumption.
specialize H' with (x := x); rename H' into H'1; try exact H'1.
elim H'1; intros H'2 H'3; try exact H'2; clear H'1; auto with algebra.
Qed.
Hint Resolve eq_part_included: algebra.
Lemma empty_included : forall A : part_set E, included (empty E) A.
simpl in |- *; unfold included in |- *; auto with algebra.
intros A x H'; try assumption.
absurd (in_part x (empty E)); auto with algebra.
Qed.
Lemma full_included : forall A : part_set E, included A (full E).
simpl in |- *; unfold included in |- *; auto with algebra.
Qed.
Hint Resolve empty_included full_included: algebra.
Definition inj_part : forall A : part_set E, MAP A E.
intros A; try assumption.
apply (Build_Map (Ap:=fun x : A => subtype_elt x)).
red in |- *.
auto with algebra.
Defined.
Lemma inj_part_injective : forall A : part_set E, injective (inj_part A).
intros A; try assumption.
red in |- *.
auto with algebra.
Qed.
Definition inj_part_included :
forall A B : part_set E, included A B -> MAP A B.
intros A B H'; try assumption.
red in H'.
apply
(Build_Map (A:=A) (B:=B)
(Ap:=fun x : A => Build_subtype (H' (A x) (subtype_prf (E:=E) (P:=A) x)))).
red in |- *.
simpl in |- *; auto with algebra.
Defined.
Lemma inj_part_included_prop :
forall (A B : part_set E) (p : included A B) (x : A),
Equal (B (inj_part_included p x)) (A x).
simpl in |- *; auto with algebra.
Qed.
Lemma inj_part_included_injective :
forall (A B : part_set E) (p : included A B),
injective (inj_part_included p).
intros A B p; red in |- *.
intros x y; try assumption.
elim x.
elim y.
simpl in |- *; auto with algebra.
Qed.
Definition id_map_parts_equal : forall A B : part_set E, Equal A B -> MAP A B.
intros A B H'; try assumption.
exact (inj_part_included (eq_part_included H')).
Defined.
Lemma id_map_parts_equal_prop :
forall (A B : part_set E) (p : Equal A B) (x : A),
Equal (subtype_elt (id_map_parts_equal p x)) (subtype_elt x).
simpl in |- *; auto with algebra.
Qed.
End Inclusion.
Section Union_of_part.
Variable E : Setoid.
Comments "We define the union of a part of" (part_set E).
Variable P : part_set (part_set E).
Definition union_part : part_set E.
apply
(Build_Predicate
(Pred_fun:=fun x : E => exists A : part_set E, in_part A P /\ in_part x A)).
red in |- *.
intros x y H' H'0; try assumption.
elim H'; intros A E0; elim E0; clear H'.
intros H' H'1; try assumption.
exists A; split; [ try assumption | idtac ].
apply in_part_comp_l with x; auto with algebra.
Defined.
Lemma union_part_prop :
forall x : E,
in_part x union_part -> exists A : part_set E, in_part A P /\ in_part x A.
intros x H'; red in H'; auto with algebra.
Qed.
Lemma union_part_prop_rev :
forall A : part_set E,
in_part A P -> forall x : E, in_part x A -> in_part x union_part.
unfold union_part in |- *; simpl in |- *; auto with algebra.
intros A H' x H'0; try assumption.
exists A; split; [ try assumption | idtac ].
auto with algebra.
Qed.
Lemma union_part_included :
forall A : part_set E, in_part A P -> included A union_part.
intros A H'; try assumption.
unfold included in |- *; auto with algebra.
intros x H'0; try assumption.
apply union_part_prop_rev with (A := A); auto with algebra.
Qed.
Lemma union_part_upper_bound :
forall Y : part_set E,
(forall A : part_set E, in_part A P -> included A Y) ->
included union_part Y.
intros Y H'; try assumption.
unfold included in |- *.
intros x H'0; try assumption.
case (union_part_prop H'0).
intros A H'1; try assumption.
elim H'1.
intros H'2 H'3; try assumption.
unfold included in H'.
apply H' with (A := A); auto with algebra.
Qed.
End Union_of_part.
Section Part_set_greater.
Comments "A nice theorem:".
Variable E : Setoid.
Variable f : MAP E (part_set E).
Hypothesis fsurj : surjective f.
Let X_def (x : E) : Prop := ~ in_part x (f x).
Let X : part_set E.
apply (Build_Predicate (E:=E) (Pred_fun:=X_def)).
unfold X_def in |- *.
red in |- *.
unfold not in |- *.
intros x y H' H'0 H'1; try assumption.
apply H'.
apply in_part_comp_l with y; auto with algebra.
apply in_part_comp_r with (Ap f y); auto with algebra.
Defined.
Let invX : exists x : E, Equal X (f x).
exact (fsurj X).
Qed.
Lemma not_inpart_comp_r :
forall (E : Setoid) (x : E) (A B : part_set E),
~ in_part x A -> Equal A B -> ~ in_part x B.
unfold not in |- *.
intros E0 x A B H' H'0 H'1; try assumption.
apply H'.
apply in_part_comp_r with B; auto with algebra.
Qed.
Theorem part_set_is_strictly_greater_than_set1 : False.
case invX.
intros x H'; try assumption.
cut (~ in_part x X).
intros H'0; try assumption.
absurd (in_part x X); auto with algebra.
simpl in |- *.
unfold X_def in |- *.
apply not_inpart_comp_r with X; auto with algebra.
unfold not in |- *.
intros H'0; try assumption.
absurd (in_part x X); auto with algebra.
apply not_inpart_comp_r with (Ap f x); auto with algebra.
Qed.
End Part_set_greater.
Theorem part_set_is_strictly_greater_than_set :
forall (E : Setoid) (f : MAP E (part_set E)), ~ surjective f.
exact part_set_is_strictly_greater_than_set1.
Qed.
Hint Unfold pred_compatible: algebra.
Hint Resolve empty_prop full_prop included_refl eq_part_included
empty_included full_included inj_part_injective inj_part_included_injective
id_map_parts_equal_prop union_part_included union_part_upper_bound
not_inpart_comp_r: algebra.