-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathIntegral_domain_facts.v
185 lines (173 loc) · 6.72 KB
/
Integral_domain_facts.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
(* This program is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1 *)
(* of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU Lesser General Public *)
(* License along with this program; if not, write to the Free *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA *)
Set Implicit Arguments.
Unset Strict Implicit.
Require Export Integral_domain_cat.
Require Export Ring_facts.
Require Export Classical_Prop.
(** Title "Basic properties of integral domains." *)
Section Lemmas.
Variable R : INTEGRAL_DOMAIN.
Lemma INTEGRAL_DOMAIN_prop_rev :
forall x y : R,
~ Equal x (monoid_unit R) ->
~ Equal y (monoid_unit R) -> ~ Equal (ring_mult x y) (monoid_unit R).
exact (idomain_prf R).
Qed.
Lemma INTEGRAL_DOMAIN_prop :
forall x y : R,
Equal (ring_mult x y) (monoid_unit R) ->
Equal x (monoid_unit R) \/ Equal y (monoid_unit R).
intros x y H'; try assumption.
generalize (INTEGRAL_DOMAIN_prop_rev (x:=x) (y:=y)).
apply NNPP; tauto.
Qed.
Lemma INTEGRAL_DOMAIN_mult_l :
forall x y : R,
~ Equal (ring_mult x y) (monoid_unit R) -> ~ Equal x (monoid_unit R).
unfold not in |- *.
intros x y H' H'0; try assumption.
absurd (Equal (ring_mult x y) (monoid_unit R)); auto with algebra.
apply Trans with (ring_mult (monoid_unit R) y); auto with algebra.
Qed.
Lemma INTEGRAL_DOMAIN_mult_r :
forall x y : R,
~ Equal (ring_mult x y) (monoid_unit R) -> ~ Equal y (monoid_unit R).
unfold not in |- *.
intros x y H' H'0; try assumption.
absurd (Equal (ring_mult x y) (monoid_unit R)); auto with algebra.
apply Trans with (ring_mult x (monoid_unit R)); auto with algebra.
Qed.
Lemma INTEGRAL_DOMAIN_mult_n0_r :
forall x y : R,
Equal (ring_mult x y) (monoid_unit R) ->
~ Equal y (monoid_unit R) -> Equal x (monoid_unit R).
intros x y H' H'0; try assumption.
intuition.
elim (INTEGRAL_DOMAIN_prop (x:=x) (y:=y)); auto with algebra.
intros H'1; try assumption.
absurd (Equal y (monoid_unit R)); auto with algebra.
Qed.
Lemma INTEGRAL_DOMAIN_mult_n0_l :
forall x y : R,
Equal (ring_mult x y) (monoid_unit R) ->
~ Equal x (monoid_unit R) -> Equal y (monoid_unit R).
intros x y H' H'0; try assumption.
elim (INTEGRAL_DOMAIN_prop (x:=x) (y:=y)); auto with algebra.
intros H'1; try assumption.
absurd (Equal x (monoid_unit R)); auto with algebra.
Qed.
Hint Resolve INTEGRAL_DOMAIN_prop INTEGRAL_DOMAIN_prop_rev
INTEGRAL_DOMAIN_mult_l INTEGRAL_DOMAIN_mult_r INTEGRAL_DOMAIN_mult_n0_l
INTEGRAL_DOMAIN_mult_n0_r: algebra.
Lemma INTEGRAL_DOMAIN_simpl_r :
forall x y z : R,
~ Equal z (monoid_unit R) ->
Equal (ring_mult x z) (ring_mult y z) -> Equal x y.
intros x y z H' H'0; try assumption.
cut
(Equal (ring_mult (sgroup_law R x (group_inverse R y)) z) (monoid_unit R)).
intros H'1; try assumption.
cut (Equal (sgroup_law R x (group_inverse R y)) (monoid_unit R)).
intros H'2; try assumption.
apply GROUP_reg_right with (group_inverse R y); auto with algebra.
apply Trans with (monoid_unit R); auto with algebra.
apply INTEGRAL_DOMAIN_mult_n0_r with z; auto with algebra.
apply
Trans with (sgroup_law R (ring_mult x z) (ring_mult (group_inverse R y) z));
auto with algebra.
apply
Trans with (sgroup_law R (ring_mult x z) (group_inverse R (ring_mult y z)));
auto with algebra.
apply
Trans with (sgroup_law R (ring_mult x z) (group_inverse R (ring_mult x z)));
auto with algebra.
Qed.
Lemma INTEGRAL_DOMAIN_simpl_l :
forall x y z : R,
~ Equal z (monoid_unit R) ->
Equal (ring_mult z x) (ring_mult z y) -> Equal x y.
intros x y z H' H'0; try assumption.
cut
(Equal (ring_mult z (sgroup_law R x (group_inverse R y))) (monoid_unit R)).
intros H'1; try assumption.
cut (Equal (sgroup_law R x (group_inverse R y)) (monoid_unit R)).
intros H'2; try assumption.
apply GROUP_reg_right with (group_inverse R y); auto with algebra.
apply Trans with (monoid_unit R); auto with algebra.
apply INTEGRAL_DOMAIN_mult_n0_l with z; auto with algebra.
apply
Trans with (sgroup_law R (ring_mult z x) (ring_mult z (group_inverse R y)));
auto with algebra.
apply
Trans with (sgroup_law R (ring_mult z x) (group_inverse R (ring_mult z y)));
auto with algebra.
apply
Trans with (sgroup_law R (ring_mult z x) (group_inverse R (ring_mult z x)));
auto with algebra.
Qed.
Lemma INTEGRAL_DOMAIN_mult_eq_r :
forall x y z : R,
Equal (ring_mult x z) (ring_mult y z) ->
Equal x y \/ Equal z (monoid_unit R).
intros x y z H'; try assumption.
cut
(Equal (ring_mult (sgroup_law R x (group_inverse R y)) z) (monoid_unit R)).
intros H'0; try assumption.
elim (INTEGRAL_DOMAIN_prop (x:=sgroup_law R x (group_inverse R y)) (y:=z));
auto with algebra.
intros H'1; try assumption.
left; try assumption.
apply GROUP_reg_right with (group_inverse R y); auto with algebra.
apply Trans with (monoid_unit R); auto with algebra.
apply
Trans with (sgroup_law R (ring_mult x z) (ring_mult (group_inverse R y) z));
auto with algebra.
apply
Trans with (sgroup_law R (ring_mult x z) (group_inverse R (ring_mult y z)));
auto with algebra.
apply
Trans with (sgroup_law R (ring_mult x z) (group_inverse R (ring_mult x z)));
auto with algebra.
Qed.
Lemma INTEGRAL_DOMAIN_mult_eq_l :
forall x y z : R,
Equal (ring_mult z x) (ring_mult z y) ->
Equal x y \/ Equal z (monoid_unit R).
intros x y z H'; try assumption.
cut
(Equal (ring_mult z (sgroup_law R x (group_inverse R y))) (monoid_unit R)).
intros H'0; try assumption.
elim (INTEGRAL_DOMAIN_prop (x:=z) (y:=sgroup_law R x (group_inverse R y)));
auto with algebra.
intros H'1; try assumption.
left; try assumption.
apply GROUP_reg_right with (group_inverse R y); auto with algebra.
apply Trans with (monoid_unit R); auto with algebra.
apply
Trans with (sgroup_law R (ring_mult z x) (ring_mult z (group_inverse R y)));
auto with algebra.
apply
Trans with (sgroup_law R (ring_mult z x) (group_inverse R (ring_mult z y)));
auto with algebra.
apply
Trans with (sgroup_law R (ring_mult z x) (group_inverse R (ring_mult z x)));
auto with algebra.
Qed.
End Lemmas.
Hint Resolve INTEGRAL_DOMAIN_prop INTEGRAL_DOMAIN_prop_rev
INTEGRAL_DOMAIN_mult_l INTEGRAL_DOMAIN_mult_r INTEGRAL_DOMAIN_mult_n0_l
INTEGRAL_DOMAIN_mult_n0_r: algebra.
Hint Resolve INTEGRAL_DOMAIN_simpl_r INTEGRAL_DOMAIN_simpl_l: algebra.