-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathGroup_quotient.v
259 lines (249 loc) · 7.94 KB
/
Group_quotient.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
(* This program is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1 *)
(* of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU Lesser General Public *)
(* License along with this program; if not, write to the Free *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA *)
Set Implicit Arguments.
Unset Strict Implicit.
Require Export Sub_group.
Require Export Group_util.
(** Title "Quotient of a group by a normal sub-group." *)
Section Def.
Variable G : GROUP.
Variable H : subgroup G.
Definition normal :=
forall x y : G,
in_part y H ->
in_part (sgroup_law _ x (sgroup_law _ y (group_inverse _ x))) H.
Hypothesis Hnormal : normal.
Definition group_quo_eq (x y : G) :=
in_part (sgroup_law _ x (group_inverse _ y)) H.
Definition group_quo_eqrel : Relation G.
apply (Build_Relation (E:=G) (Rel_fun:=group_quo_eq)).
red in |- *.
unfold app_rel, group_quo_eq in |- *.
intros x x' y y' H' H'0 H'1; try assumption.
apply in_part_comp_l with (sgroup_law G x (group_inverse G y));
auto with algebra.
Defined.
Lemma group_quo_eqrel_equiv : equivalence group_quo_eqrel.
red in Hnormal.
red in |- *.
split; [ try assumption | idtac ].
red in |- *.
intros x; red in |- *.
simpl in |- *.
unfold app_rel, group_quo_eq in |- *.
apply
in_part_comp_l
with (sgroup_law G x (sgroup_law G (monoid_unit G) (group_inverse G x)));
auto with algebra.
red in |- *.
split; [ try assumption | idtac ].
red in |- *.
simpl in |- *.
unfold app_rel, group_quo_eq in |- *.
intros x y z H' H'0; try assumption.
apply
in_part_comp_l
with
(sgroup_law G (sgroup_law G x (group_inverse G y))
(sgroup_law G y (group_inverse G z))); auto with algebra.
apply
Trans
with
(sgroup_law G x
(sgroup_law G (group_inverse G y) (sgroup_law G y (group_inverse G z))));
auto with algebra.
apply
Trans
with
(sgroup_law G x
(sgroup_law G (sgroup_law G (group_inverse G y) y) (group_inverse G z)));
auto with algebra.
apply
Trans
with (sgroup_law G x (sgroup_law G (monoid_unit G) (group_inverse G z)));
auto with algebra.
red in |- *.
simpl in |- *.
unfold app_rel, group_quo_eq in |- *.
intros x y H'; try assumption.
apply
in_part_comp_l with (group_inverse G (sgroup_law G x (group_inverse G y)));
auto with algebra.
apply
Trans
with
(sgroup_law G (group_inverse G (group_inverse G y)) (group_inverse G x));
auto with algebra.
Qed.
Definition group_quo_set := quotient G group_quo_eqrel group_quo_eqrel_equiv.
Lemma normal_com_in :
forall x y : G, in_part (sgroup_law _ x y) H -> in_part (sgroup_law _ y x) H.
intros x y H'; try assumption.
apply
in_part_comp_l
with (sgroup_law G y (sgroup_law G (sgroup_law G x y) (group_inverse G y)));
auto with algebra.
apply SGROUP_comp; auto with algebra.
apply Trans with (sgroup_law G x (sgroup_law G y (group_inverse G y)));
auto with algebra.
apply Trans with (sgroup_law G x (monoid_unit G)); auto with algebra.
Qed.
Hint Immediate normal_com_in: algebra.
Set Strict Implicit.
Unset Implicit Arguments.
Definition group_quo : group.
apply
(BUILD_GROUP (E:=group_quo_set) (genlaw:=fun x y : G => sgroup_law _ x y)
(e:=monoid_unit G) (geninv:=fun x : G => group_inverse _ x)).
simpl in |- *; auto with algebra.
unfold app_rel, group_quo_eq in |- *.
intros x x' y y' H' H'0; try assumption.
apply
in_part_comp_l
with
(sgroup_law G x (sgroup_law G y (group_inverse G (sgroup_law G x' y'))));
auto with algebra.
apply normal_com_in.
apply
in_part_comp_l
with
(sgroup_law G
(sgroup_law G y
(sgroup_law G (group_inverse G y') (group_inverse G x'))) x);
auto with algebra.
apply
in_part_comp_l
with
(sgroup_law G
(sgroup_law G (sgroup_law G y (group_inverse G y'))
(group_inverse G x')) x); auto with algebra.
apply
in_part_comp_l
with
(sgroup_law G (sgroup_law G y (group_inverse G y'))
(sgroup_law G (group_inverse G x') x)); auto with algebra.
intros x y z; try assumption.
simpl in |- *; auto with algebra.
unfold app_rel, group_quo_eq in |- *.
apply
in_part_comp_l
with
(sgroup_law G (sgroup_law G (sgroup_law G x y) z)
(sgroup_law G (group_inverse G (sgroup_law G y z)) (group_inverse G x)));
auto with algebra.
apply
in_part_comp_l
with
(sgroup_law G (sgroup_law G (sgroup_law G x y) z)
(sgroup_law G (sgroup_law G (group_inverse G z) (group_inverse G y))
(group_inverse G x))); auto with algebra.
apply
in_part_comp_l
with
(sgroup_law G (sgroup_law G x (sgroup_law G y z))
(sgroup_law G (group_inverse G z)
(sgroup_law G (group_inverse G y) (group_inverse G x))));
auto with algebra.
apply
in_part_comp_l
with
(sgroup_law G x
(sgroup_law G (sgroup_law G y z)
(sgroup_law G (group_inverse G z)
(sgroup_law G (group_inverse G y) (group_inverse G x)))));
auto with algebra.
apply
in_part_comp_l
with
(sgroup_law G x
(sgroup_law G y
(sgroup_law G z
(sgroup_law G (group_inverse G z)
(sgroup_law G (group_inverse G y) (group_inverse G x))))));
auto with algebra.
apply
in_part_comp_l
with
(sgroup_law G x
(sgroup_law G y
(sgroup_law G (sgroup_law G z (group_inverse G z))
(sgroup_law G (group_inverse G y) (group_inverse G x)))));
auto with algebra.
apply
in_part_comp_l
with
(sgroup_law G x
(sgroup_law G y
(sgroup_law G (monoid_unit G)
(sgroup_law G (group_inverse G y) (group_inverse G x)))));
auto with algebra.
apply
in_part_comp_l
with
(sgroup_law G x
(sgroup_law G y (sgroup_law G (group_inverse G y) (group_inverse G x))));
auto with algebra.
apply
in_part_comp_l
with
(sgroup_law G (sgroup_law G x y)
(sgroup_law G (group_inverse G y) (group_inverse G x)));
auto with algebra.
apply
in_part_comp_l
with (sgroup_law G (sgroup_law G x y) (group_inverse G (sgroup_law G x y)));
auto with algebra.
apply in_part_comp_l with (monoid_unit G); auto with algebra.
simpl in |- *; auto with algebra.
unfold cart_eq, group_quo_eq in |- *.
intros x; try assumption.
apply in_part_comp_l with (sgroup_law G x (group_inverse G x));
auto with algebra.
apply in_part_comp_l with (monoid_unit G); auto with algebra.
intros x y; try assumption.
simpl in |- *; auto with algebra.
unfold cart_eq, group_quo_eq in |- *.
intros H'; try assumption.
apply normal_com_in.
apply
in_part_comp_l with (group_inverse G (sgroup_law G x (group_inverse G y)));
auto with algebra.
intros x; try assumption.
simpl in |- *; auto with algebra.
unfold cart_eq, group_quo_eq in |- *.
apply
in_part_comp_l
with (sgroup_law G (sgroup_law G x (group_inverse G x)) (monoid_unit G));
auto with algebra.
apply in_part_comp_l with (sgroup_law G x (group_inverse G x));
auto with algebra.
apply in_part_comp_l with (monoid_unit G); auto with algebra.
Defined.
Set Implicit Arguments.
Unset Strict Implicit.
Definition group_quo_surj : Hom G group_quo.
apply (BUILD_HOM_GROUP (G:=G) (G':=group_quo) (ff:=fun x : G => x)).
intros x y; try assumption.
simpl in |- *; auto with algebra.
unfold cart_eq, group_quo_eq in |- *.
intros H'; try assumption.
apply in_part_comp_l with (sgroup_law G x (group_inverse G x));
auto with algebra.
apply in_part_comp_l with (monoid_unit G); auto with algebra.
auto with algebra.
auto with algebra.
Defined.
End Def.
Hint Immediate normal_com_in: algebra.