-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathGroup_of_group_hom.v
148 lines (138 loc) · 4.32 KB
/
Group_of_group_hom.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
(* This program is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1 *)
(* of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU Lesser General Public *)
(* License along with this program; if not, write to the Free *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA *)
Set Implicit Arguments.
Unset Strict Implicit.
Require Export Group_util.
Require Export Abelian_group_facts.
(** Title "The abelian group of morphisms from a group to an abelian group." *)
Section Def.
Variable G : GROUP.
Variable G' : ABELIAN_GROUP.
Definition group_hom_law : forall f g : Hom G G', Hom G G'.
intros f0 g.
apply
(BUILD_HOM_GROUP (G:=G) (G':=G')
(ff:=fun x : G => sgroup_law G' (f0 x) (g x))).
auto with algebra.
intros x y; try assumption.
apply
Trans
with
(sgroup_law G'
(sgroup_law G' (Ap (sgroup_map (monoid_sgroup_hom f0)) x)
(Ap (sgroup_map (monoid_sgroup_hom f0)) y))
(sgroup_law G' (Ap (sgroup_map (monoid_sgroup_hom g)) x)
(Ap (sgroup_map (monoid_sgroup_hom g)) y)));
auto with algebra.
apply Trans with (sgroup_law G' (monoid_unit G') (monoid_unit G'));
auto with algebra.
Defined.
Definition group_hom_unit : Hom G G'.
apply (BUILD_HOM_GROUP (G:=G) (G':=G') (ff:=fun x : G => monoid_unit G')).
auto with algebra.
auto with algebra.
auto with algebra.
Defined.
Definition group_hom_inv : forall f : Hom G G', Hom G G'.
intros f0.
apply
(BUILD_HOM_GROUP (G:=G) (G':=G') (ff:=fun x : G => group_inverse G' (f0 x))).
auto with algebra.
intros x y; try assumption.
apply
Trans
with
(Ap (sgroup_map (monoid_sgroup_hom f0))
(group_inverse G (sgroup_law G x y))); auto with algebra.
apply
Trans
with
(Ap (sgroup_map (monoid_sgroup_hom f0))
(sgroup_law G (group_inverse G y) (group_inverse G x)));
auto with algebra.
apply
Trans
with
(sgroup_law G'
(Ap (sgroup_map (monoid_sgroup_hom f0)) (group_inverse G y))
(Ap (sgroup_map (monoid_sgroup_hom f0)) (group_inverse G x)));
auto with algebra.
apply
Trans
with
(sgroup_law G'
(Ap (sgroup_map (monoid_sgroup_hom f0)) (group_inverse G x))
(Ap (sgroup_map (monoid_sgroup_hom f0)) (group_inverse G y)));
auto with algebra.
apply
Trans
with
(Ap (sgroup_map (monoid_sgroup_hom f0)) (group_inverse G (monoid_unit G)));
auto with algebra.
apply Trans with (Ap (sgroup_map (monoid_sgroup_hom f0)) (monoid_unit G));
auto with algebra.
Defined.
Definition group_hom : ABELIAN_GROUP.
apply
(BUILD_ABELIAN_GROUP (E:=Hom G G') (genlaw:=group_hom_law)
(e:=group_hom_unit) (geninv:=group_hom_inv)).
intros x x' y y' H' H'0; try assumption.
simpl in |- *.
red in |- *.
simpl in |- *.
auto with algebra.
intros x y z; try assumption.
simpl in |- *.
red in |- *.
simpl in |- *.
auto with algebra.
intros x; try assumption.
simpl in |- *.
red in |- *.
simpl in |- *.
auto with algebra.
intros x y H'; try assumption.
simpl in |- *.
red in |- *.
simpl in |- *.
auto with algebra.
intros x; try assumption.
simpl in |- *.
red in |- *.
simpl in |- *.
auto with algebra.
intros x y; try assumption.
simpl in |- *.
red in |- *.
simpl in |- *.
auto with algebra.
Defined.
Lemma group_hom_law_prop :
forall (f g : group_hom) (x : G),
Equal (sgroup_law _ f g x) (sgroup_law _ (f x) (g x)).
simpl in |- *; auto with algebra.
Qed.
Lemma group_hom_unit_prop :
forall x : G, Equal (monoid_unit group_hom x) (monoid_unit G').
simpl in |- *; auto with algebra.
Qed.
Lemma group_hom_inv_prop :
forall (f : group_hom) (x : G),
Equal (group_inverse group_hom f x) (group_inverse G' (f x)).
simpl in |- *; auto with algebra.
Qed.
End Def.
Hint Resolve group_hom_law_prop group_hom_unit_prop group_hom_inv_prop:
algebra.