-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathGroup_kernel.v
139 lines (129 loc) · 4.61 KB
/
Group_kernel.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
(* This program is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1 *)
(* of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU Lesser General Public *)
(* License along with this program; if not, write to the Free *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA *)
Set Implicit Arguments.
Unset Strict Implicit.
Require Export Group_util.
Require Export Group_quotient.
Require Export Parts2.
(** Title "Kernel and image of a group homomorphism." *)
Section Def.
Variable G G' : GROUP.
Variable f : Hom G G'.
Definition kernel_part : part_set G.
apply
(Build_Predicate (E:=G)
(Pred_fun:=fun x : G => Equal (f x) (monoid_unit G'))).
red in |- *.
intros x y H' H'0; try assumption.
apply Trans with (Ap (sgroup_map (monoid_sgroup_hom f)) x); auto with algebra.
Defined.
Definition Ker : subgroup G.
apply (BUILD_SUB_GROUP (G:=G) (H:=kernel_part)).
simpl in |- *.
intros x y H' H'0; try assumption.
apply
Trans
with
(sgroup_law _ (Ap (sgroup_map (monoid_sgroup_hom f)) x)
(Ap (sgroup_map (monoid_sgroup_hom f)) y));
auto with algebra.
apply Trans with (sgroup_law G' (monoid_unit G') (monoid_unit G'));
auto with algebra.
simpl in |- *.
auto with algebra.
simpl in |- *.
intros x H'; try assumption.
apply Trans with (group_inverse _ (Ap (sgroup_map (monoid_sgroup_hom f)) x));
auto with algebra.
apply Trans with (group_inverse _ (monoid_unit G')); auto with algebra.
Defined.
Definition coKer : subgroup G'.
apply (BUILD_SUB_GROUP (G:=G') (H:=image f (full G))).
intros x y H' H'0; try assumption.
elim H'0; intros x0 E; elim E; intros H'1 H'2; try exact H'2; clear E H'0.
elim H'; intros x1 E; elim E; intros H'0 H'3; try exact H'3; clear E H'.
exists (sgroup_law _ x1 x0); split; [ try assumption | idtac ].
apply
Trans
with
(sgroup_law G' (Ap (sgroup_map (monoid_sgroup_hom f)) x1)
(Ap (sgroup_map (monoid_sgroup_hom f)) x0));
auto with algebra.
simpl in |- *.
exists (monoid_unit G); auto with algebra.
simpl in |- *.
intros x H'; try assumption.
elim H'; intros x0 E; elim E; intros H'0 H'1; try exact H'1; clear E H'.
exists (group_inverse _ x0); split; [ try assumption | idtac ].
apply
Trans with (group_inverse G' (Ap (sgroup_map (monoid_sgroup_hom f)) x0));
auto with algebra.
Defined.
Lemma kernel_normal : normal Ker.
red in |- *.
simpl in |- *.
intros x y H'; try assumption.
apply
Trans
with
(sgroup_law _ (Ap (sgroup_map (monoid_sgroup_hom f)) x)
(Ap (sgroup_map (monoid_sgroup_hom f))
(sgroup_law G y (group_inverse G x)))); auto with algebra.
apply
Trans
with
(sgroup_law _ (Ap (sgroup_map (monoid_sgroup_hom f)) x)
(sgroup_law _ (Ap (sgroup_map (monoid_sgroup_hom f)) y)
(Ap (sgroup_map (monoid_sgroup_hom f)) (group_inverse G x))));
auto with algebra.
apply
Trans
with
(sgroup_law _ (Ap (sgroup_map (monoid_sgroup_hom f)) x)
(sgroup_law _ (Ap (sgroup_map (monoid_sgroup_hom f)) y)
(group_inverse _ (Ap (sgroup_map (monoid_sgroup_hom f)) x))));
auto with algebra.
apply
Trans
with
(sgroup_law _ (Ap (sgroup_map (monoid_sgroup_hom f)) x)
(sgroup_law _ (monoid_unit G')
(group_inverse _ (Ap (sgroup_map (monoid_sgroup_hom f)) x))));
auto with algebra.
apply
Trans
with
(sgroup_law _ (Ap (sgroup_map (monoid_sgroup_hom f)) x)
(group_inverse _ (Ap (sgroup_map (monoid_sgroup_hom f)) x)));
auto with algebra.
Qed.
Set Strict Implicit.
Unset Implicit Arguments.
Definition group_quo_ker := group_quo G Ker kernel_normal.
Set Implicit Arguments.
Unset Strict Implicit.
Lemma Ker_prop : forall x : G, in_part x Ker -> Equal (f x) (monoid_unit G').
auto with algebra.
Qed.
Lemma Ker_prop_rev :
forall x : G, Equal (f x) (monoid_unit G') -> in_part x Ker.
auto with algebra.
Qed.
Lemma coKer_prop : forall x : G, in_part (f x) coKer.
simpl in |- *.
intros x; exists x; split; [ idtac | try assumption ]; auto with algebra.
Qed.
End Def.
Hint Resolve kernel_normal Ker_prop coKer_prop: algebra.