-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathGroup_hom_factor.v
141 lines (132 loc) · 4.46 KB
/
Group_hom_factor.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
(* This program is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1 *)
(* of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU Lesser General Public *)
(* License along with this program; if not, write to the Free *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA *)
Set Implicit Arguments.
Unset Strict Implicit.
Require Export Group_kernel.
(** Title "Factorisation of a group homomorphism: G -> G/Kerf -> coKerf -> G'." *)
Section Def.
Variable G G' : GROUP.
Variable f : Hom G G'.
Definition surj_group_quo_ker :
Hom G (group_quo G (Ker f) (kernel_normal (G:=G) (G':=G') (f:=f))) :=
group_quo_surj (kernel_normal (f:=f)).
Lemma surj_group_quo_ker_surjective : surjective surj_group_quo_ker.
red in |- *.
simpl in |- *.
unfold group_quo_eq, subtype_image_equal in |- *.
intros y; exists y; try assumption.
simpl in |- *.
apply Trans with (Ap (sgroup_map (monoid_sgroup_hom f)) (monoid_unit G));
auto with algebra.
Qed.
Definition inj_coKer_group : Hom (coKer f:GROUP) G'.
apply (BUILD_HOM_GROUP (G:=coKer f) (G':=G') (ff:=inj_part (coKer f))).
simpl in |- *.
auto with algebra.
simpl in |- *.
auto with algebra.
simpl in |- *.
auto with algebra.
Defined.
Lemma inj_coKer_group_injective : injective inj_coKer_group.
exact (inj_part_injective (E:=G') (A:=coKer f)).
Qed.
Definition bij_group_quo_ker_coKer :
Hom (group_quo G (Ker f) (kernel_normal (G:=G) (G':=G') (f:=f)):GROUP)
(coKer f).
apply
(BUILD_HOM_GROUP
(G:=group_quo G (Ker f) (kernel_normal (G:=G) (G':=G') (f:=f)))
(G':=coKer f)
(ff:=fun x : G =>
Build_subtype (P:=image (sgroup_map (monoid_sgroup_hom f)) (full G))
(subtype_elt:=f x) (coKer_prop f x))).
simpl in |- *.
unfold group_quo_eq, subtype_image_equal in |- *.
simpl in |- *.
intros x y H'; try assumption.
apply
GROUP_reg_right
with (group_inverse _ (Ap (sgroup_map (monoid_sgroup_hom f)) y));
auto with algebra.
apply
Trans
with
(sgroup_law G' (Ap (sgroup_map (monoid_sgroup_hom f)) x)
(Ap (sgroup_map (monoid_sgroup_hom f)) (group_inverse G y)));
auto with algebra.
apply
Trans
with
(Ap (sgroup_map (monoid_sgroup_hom f))
(sgroup_law G x (group_inverse G y))); auto with algebra.
apply Trans with (monoid_unit G'); auto with algebra.
simpl in |- *.
unfold group_quo_eq, subtype_image_equal in |- *.
simpl in |- *.
intros x y; try assumption.
exact (SGROUP_hom_prop f x y).
simpl in |- *.
unfold group_quo_eq, subtype_image_equal in |- *.
simpl in |- *.
auto with algebra.
Defined.
Lemma bij_group_quo_ker_coKer_bijective : bijective bij_group_quo_ker_coKer.
red in |- *.
split; [ try assumption | idtac ].
red in |- *.
simpl in |- *.
unfold group_quo_eq, subtype_image_equal in |- *.
simpl in |- *.
intros x y H'; try assumption.
apply
Trans
with
(sgroup_law G' (Ap (sgroup_map (monoid_sgroup_hom f)) x)
(Ap (sgroup_map (monoid_sgroup_hom f)) (group_inverse G y)));
auto with algebra.
apply
Trans
with
(sgroup_law G' (Ap (sgroup_map (monoid_sgroup_hom f)) x)
(group_inverse _ (Ap (sgroup_map (monoid_sgroup_hom f)) y)));
auto with algebra.
apply
Trans
with
(sgroup_law G' (Ap (sgroup_map (monoid_sgroup_hom f)) x)
(group_inverse _ (Ap (sgroup_map (monoid_sgroup_hom f)) x)));
auto with algebra.
red in |- *.
intros y; try assumption.
elim y.
intros y' subtype_prf; try assumption.
elim subtype_prf.
intros x H'; try assumption.
elim H'; intros H'0 H'1; try exact H'0; clear H'.
exists x; try assumption.
Qed.
Theorem factor_group_hom :
Equal f
(comp_hom inj_coKer_group
(comp_hom bij_group_quo_ker_coKer surj_group_quo_ker)).
simpl in |- *.
unfold Map_eq in |- *.
simpl in |- *.
auto with algebra.
Qed.
End Def.
Hint Resolve factor_group_hom bij_group_quo_ker_coKer_bijective
inj_coKer_group_injective surj_group_quo_ker_surjective: algebra.