-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathGenerated_group.v
92 lines (85 loc) · 3.36 KB
/
Generated_group.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
(* This program is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1 *)
(* of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU Lesser General Public *)
(* License along with this program; if not, write to the Free *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA *)
Set Implicit Arguments.
Unset Strict Implicit.
Require Export Group_kernel.
Require Export Free_group.
Section Generated_group_def.
Variable G : GROUP.
Variable A : part_set G.
Definition generated_group : subgroup G := coKer (FG_lift (inj_part A)).
End Generated_group_def.
Lemma generated_group_minimal :
forall (G : GROUP) (A : part_set G) (H : subgroup G),
included A H -> included (generated_group A) H.
unfold included in |- *.
simpl in |- *.
intros G A H H' x H'0; try assumption.
elim H'0; intros x0; clear H'0.
generalize x; clear x.
elim x0.
intros c; try assumption.
elim c.
simpl in |- *.
intros y subtype_prf x H'0; elim H'0; intros H'1 H'2; try exact H'2;
clear H'0.
apply in_part_comp_l with y; auto with algebra.
intros f H'0 f0 H'1 x H'2; elim H'2; intros H'3 H'4; try exact H'4; clear H'2.
simpl in H'4.
apply
in_part_comp_l
with
(sgroup_law G (FG_lift_fun (inj_part A) f) (FG_lift_fun (inj_part A) f0));
auto with algebra.
simpl in |- *.
intros x H'0; elim H'0; intros H'1 H'2; try exact H'2; clear H'0.
apply in_part_comp_l with (monoid_unit G); auto with algebra.
intros f H'0 x H'1; try assumption.
elim H'1; intros H'2 H'3; simpl in H'3; clear H'1.
apply in_part_comp_l with (group_inverse G (FG_lift_fun (inj_part A) f));
auto with algebra.
Qed.
Lemma generated_group_prop_included :
forall (G : GROUP) (A : part_set G), included A (generated_group A).
unfold included in |- *.
simpl in |- *.
intros G A x H'; try assumption.
exists (Var (V:=A) (Build_subtype (E:=G) (P:=A) (subtype_elt:=x) H')); split;
[ idtac | try assumption ].
auto with algebra.
simpl in |- *.
auto with algebra.
Qed.
Lemma generated_group_prop :
forall (G : GROUP) (A : part_set G) (y : G),
in_part y (generated_group A) ->
exists x : FG A, Equal y (FG_lift (inj_part A) x).
simpl in |- *; auto with algebra.
intros G A y H'; try assumption.
elim H'; intros x E; elim E; intros H'0 H'1; try exact H'1; clear E H'.
exists x; try assumption.
Qed.
Lemma generated_group_prop_rev :
forall (G : GROUP) (A : part_set G) (y : G),
(exists x : FG A, Equal y (FG_lift (inj_part A) x)) ->
in_part y (generated_group A).
intros G A y H'; try assumption.
elim H'; intros x E; try exact E; clear H'.
simpl in |- *; auto with algebra.
exists x; split; [ idtac | try assumption ].
auto with algebra.
Qed.
Hint Resolve generated_group_minimal generated_group_prop_included
generated_group_prop_rev: algebra.