-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathFree_abelian_monoid.v
106 lines (95 loc) · 3.63 KB
/
Free_abelian_monoid.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
(* This program is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1 *)
(* of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU Lesser General Public *)
(* License along with this program; if not, write to the Free *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA *)
Set Implicit Arguments.
Unset Strict Implicit.
Require Export Monoid_cat.
Require Export Sgroup_facts.
Require Export Monoid_facts.
Require Export Monoid_util.
Require Export Abelian_group_facts.
Section Free_abelian_monoid_def.
Variable V : SET.
Inductive FaM : Type :=
| Var : V -> FaM
| Law : FaM -> FaM -> FaM
| Unit : FaM.
Inductive eqFaM : FaM -> FaM -> Prop :=
| eqFaM_Var : forall x y : V, Equal x y -> (eqFaM (Var x) (Var y):Prop)
| eqFaM_law :
forall x x' y y' : FaM,
eqFaM x x' -> eqFaM y y' -> (eqFaM (Law x y) (Law x' y'):Prop)
| eqFaM_law_assoc :
forall x y z : FaM, eqFaM (Law (Law x y) z) (Law x (Law y z)):Prop
| eqFaM_law0r : forall x : FaM, eqFaM (Law x Unit) x:Prop
| eqFaM_law0l : forall x : FaM, eqFaM (Law Unit x) x:Prop
| eqFaM_refl : forall x : FaM, eqFaM x x:Prop
| eqFaM_sym : forall x y : FaM, eqFaM x y -> (eqFaM y x:Prop)
| eqFaM_trans :
forall x y z : FaM, eqFaM x y -> eqFaM y z -> (eqFaM x z:Prop)
| eqFaM_com : forall x y : FaM, eqFaM (Law x y) (Law y x).
Hint Resolve eqFaM_Var eqFaM_law eqFaM_law_assoc eqFaM_law0r eqFaM_law0l
eqFaM_refl eqFaM_com: algebra.
Hint Immediate eqFaM_sym: algebra.
Lemma eqFaM_Equiv : equivalence eqFaM.
red in |- *.
split; [ try assumption | idtac ].
exact eqFaM_refl.
red in |- *.
split; [ try assumption | idtac ].
exact eqFaM_trans.
exact eqFaM_sym.
Qed.
Definition FaM_set := Build_Setoid eqFaM_Equiv.
Definition FreeAbelianMonoid : ABELIAN_MONOID.
apply (BUILD_ABELIAN_MONOID (E:=FaM_set) (genlaw:=Law) (e:=Unit)).
exact eqFaM_law.
exact eqFaM_law_assoc.
exact eqFaM_law0r.
exact eqFaM_law0l.
exact eqFaM_com.
Defined.
Section Universal_prop.
Variable M : ABELIAN_MONOID.
Variable f : Hom V M.
Fixpoint FaM_lift_fun (p : FreeAbelianMonoid) : M :=
match p with
| Var v => f v
| Law p1 p2 => sgroup_law _ (FaM_lift_fun p1) (FaM_lift_fun p2)
| Unit => monoid_unit M
end.
Definition FaM_lift : Hom FreeAbelianMonoid M.
apply (BUILD_HOM_MONOID (G:=FreeAbelianMonoid) (G':=M) (ff:=FaM_lift_fun)).
intros x y H'; try assumption.
elim H'; simpl in |- *; auto with algebra.
intros x0 y0 z H'0 H'1 H'2 H'3; try assumption.
apply Trans with (FaM_lift_fun y0); auto with algebra.
simpl in |- *; auto with algebra.
simpl in |- *; auto with algebra.
Defined.
Definition FaM_var : Hom V FreeAbelianMonoid.
apply (Build_Map (A:=V) (B:=FreeAbelianMonoid) (Ap:=Var)).
red in |- *.
simpl in |- *; auto with algebra.
Defined.
Lemma FaM_comp_prop :
Equal f (comp_hom (FaM_lift:Hom (FreeAbelianMonoid:SET) M) FaM_var).
simpl in |- *.
red in |- *.
simpl in |- *.
auto with algebra.
Qed.
End Universal_prop.
End Free_abelian_monoid_def.
Hint Resolve FaM_comp_prop: algebra.