-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathFmap.v
376 lines (362 loc) · 12.7 KB
/
Fmap.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
(* This program is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1 *)
(* of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU Lesser General Public *)
(* License along with this program; if not, write to the Free *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA *)
Set Implicit Arguments.
Unset Strict Implicit.
Require Export Tiroirs.
Require Export Parts2.
Require Export Classical_Pred_Type.
Require Export Compare_dec.
Lemma not_injective_prop :
forall (A B : Setoid) (f : MAP A B),
~ injective f ->
exists x : A, (exists y : A, ~ Equal x y /\ Equal (f x) (f y)).
unfold injective in |- *.
intros A B f H'; try assumption.
cut
(ex
(fun x : A =>
~ (forall y : A, ~ (~ Equal x y /\ Equal (Ap f x) (Ap f y))))).
intros H'0; try assumption.
elim H'0; intros x E; try exact E; clear H'0.
exists x; try assumption.
cut (ex (fun y : A => ~ ~ (~ Equal x y /\ Equal (Ap f x) (Ap f y)))).
intros H'0; try assumption.
elim H'0; intros y E0; try exact E0; clear H'0.
exists y; try assumption.
apply NNPP; auto with *.
apply
not_all_ex_not
with (P := fun y : A => ~ (~ Equal x y /\ Equal (Ap f x) (Ap f y)));
auto with *.
apply
not_all_ex_not
with
(P := fun x : A =>
forall y : A, ~ (~ Equal x y /\ Equal (Ap f x) (Ap f y)));
auto with *.
red in |- *.
intros H'0; try assumption.
apply H'.
intros x y H'1; try assumption.
specialize H'0 with (n := x) (y := y); rename H'0 into H'3; try exact H'3.
apply NNPP; tauto.
Qed.
Lemma not_surjective_prop :
forall (A B : Setoid) (f : MAP A B),
~ surjective f -> exists y : B, ~ in_part y (image_map f).
intros A B f H'; try assumption.
apply not_all_ex_not with (P := fun y : B => in_part y (image_map f)).
red in |- *.
red in H'.
intros H'0; try assumption.
lapply H'; [ intros H'1; try exact H'1; clear H' | clear H' ].
red in |- *.
simpl in H'0.
intros y; try assumption.
elim (H'0 y); intros x E; elim E; intros H'1 H'2; try exact H'2; clear E.
exists x; try assumption.
Qed.
Parameter
image_empty :
forall (E F : Setoid) (f : MAP E F) (A : part_set E),
Equal A (empty E) -> Equal (image f A) (empty F).
Hint Resolve image_empty: algebra.
Parameter
image_union :
forall (E F : Setoid) (f : MAP E F) (A B : part_set E),
Equal (image f (union A B)) (union (image f A) (image f B)).
Hint Resolve image_union: algebra.
Parameter
image_single :
forall (E F : Setoid) (f : MAP E F) (A : part_set E) (x : E),
Equal (image f (single x)) (single (f x)).
Hint Resolve image_single: algebra.
Parameter
union_single_in :
forall (E : Setoid) (A : part_set E) (x : E),
in_part x A -> Equal (union A (single x)) A.
Hint Resolve union_single_in: algebra.
Lemma cardinal_image_lesser :
forall (E F : Setoid) (f : MAP E F) (A : part_set E) (n : nat),
cardinal A n -> exists m : nat, cardinal (image f A) m /\ m <= n.
intros E F f A n H'; try assumption.
apply
cardinal_ind2
with
(P := fun (n : nat) (A : part_set E) (c : cardinal A n) =>
ex (fun m : nat => cardinal (image f A) m /\ m <= n)).
intros A0 H'0; try assumption.
exists 0; split; [ idtac | auto with * ].
apply cardinal_empty; auto with *.
intros n0 H'0 A0 B x H'1 H'2 H'3; try assumption.
case (classic (in_part (f x) (image f B))).
intros H'4; try assumption.
elim (H'0 B);
[ intros m E0; elim E0; intros H'7 H'8; try exact H'7; clear E0 | idtac ].
exists m; split; [ idtac | try assumption ].
apply cardinal_comp with (image f B) m; auto with *.
apply Sym.
apply Trans with (image f (add_part B x)); auto with *.
unfold add_part in |- *.
apply Trans with (union (image f B) (image f (single x))); auto with *.
apply Trans with (union (image f B) (single (Ap f x))); auto with *.
auto with *.
apply cardinal_S with A0 x; auto with *.
intros H'4; try assumption.
elim (H'0 B);
[ intros m E0; elim E0; intros H'7 H'8; try exact H'7; clear E0 | idtac ].
exists (S m); split; [ try assumption | idtac ].
apply cardinal_add with (image f B) (Ap f x); auto with *.
unfold add_part in |- *.
unfold add_part in H'2.
apply Trans with (image f (union B (single x))); auto with *.
apply Trans with (union (image f B) (image f (single x))); auto with *.
auto with *.
apply cardinal_S with A0 x; auto with *.
auto with *.
Qed.
Lemma cardinal_image_injective :
forall (E F : Setoid) (f : MAP E F) (A : part_set E) (n : nat),
cardinal A n -> injective f -> cardinal (image f A) n.
intros E F f A n H' H'0; try assumption.
case (cardinal_image_lesser f H').
intros x H'1; try assumption.
elim H'1; intros H'2 H'3; try exact H'2; clear H'1.
cut (x < n \/ x = n).
intros H'1; try assumption.
elim H'1; [ intros H'4; try exact H'4; clear H'1 | intros H'4; clear H'1 ].
case
(tiroirs (E:=E) (F:=F) (f:=f) (n:=n) (Chaussettes:=A) H' (m:=x)
(Tiroirs:=image f A) H'2 H'4).
auto with *.
intros x0 H'1; try assumption.
elim H'1; intros y E0; elim E0; intros H'5 H'6; try exact H'5; clear E0 H'1.
red in H'0.
absurd (Equal x0 y); auto with *.
apply cardinal_comp with (image f A) x; auto with *.
case (lt_eq_lt_dec x n).
intros H'1; elim H'1;
[ intros H'4; try exact H'4; clear H'1 | intros H'4; clear H'1 ];
auto with *.
intros H'1; try assumption.
absurd (n < x); auto with *.
Qed.
Parameter
not_in_part_comp_r :
forall (E : Setoid) (A B : part_set E) (x : E),
~ in_part x A -> Equal A B -> ~ in_part x B.
Parameter
diff_single_not_in :
forall (E : Setoid) (A : part_set E) (x : E),
~ in_part x (diff A (single x)).
Hint Resolve diff_single_not_in: algebra.
Parameter
diff_el_union_single :
forall (E : Setoid) (A : part_set E) (x : E),
in_part x A -> Equal A (union (diff A (single x)) (single x)).
Hint Resolve diff_el_union_single: algebra.
Lemma cardinal_image_strict_lesser :
forall (E F : Setoid) (f : MAP E F) (n : nat),
cardinal (full E) n ->
~ injective f -> exists m : nat, cardinal (image_map f) m /\ m < n.
intros E F f n; try assumption.
case n.
intros H' H'0; try assumption.
case (not_injective_prop H'0).
intros x H'1; try assumption.
absurd (in_part x (full E)); auto with *.
apply not_in_part_comp_r with (empty E); auto with *.
inversion H'.
auto with *.
intros n0 H' H'0; try assumption.
case (not_injective_prop H'0).
intros x H'1; try assumption.
elim H'1; intros y E0; elim E0; intros H'2 H'3; try exact H'2; clear E0 H'1.
cut (cardinal (diff (full E) (single x)) n0).
intros H'1; try assumption.
case (cardinal_image_lesser f H'1).
intros m H'4; try assumption.
exists m; split; [ try assumption | idtac ].
elim H'4; intros H'5 H'6; try exact H'5; clear H'4.
apply cardinal_comp with (image f (diff (full E) (single x))) m; auto with *.
apply included_antisym.
unfold image_map in |- *.
apply image_included; auto with *.
unfold image_map in |- *.
unfold included in |- *.
intros x0 H'4; try assumption.
elim H'4.
intros x1 H'7; try assumption.
case (classic (Equal x1 x)).
intros H'8; try assumption.
simpl in |- *.
exists y; split; [ idtac | try assumption ].
split; [ idtac | try assumption ].
auto with *.
auto with *.
apply Trans with (f x); auto with *.
elim H'7; intros H'9 H'10; try exact H'10; clear H'7.
apply Trans with (f x1); auto with *.
intros H'8; try assumption.
simpl in |- *.
exists x1; split; [ idtac | try assumption ].
auto with *.
elim H'7; intros H'9 H'10; try exact H'10; clear H'7.
elim H'4; intros H'5 H'6; try exact H'6; clear H'4; auto with *.
apply cardinal_S with (full E) x; auto with *.
unfold add_part in |- *.
auto with *.
Qed.
Lemma cardinal_image_equal_injective :
forall (E F : Setoid) (f : MAP E F) (n : nat),
cardinal (full E) n -> cardinal (image_map f) n -> injective f.
intros E F f n H' H'0; try assumption.
apply NNPP.
red in |- *; intros H'1; try exact H'1.
case (cardinal_image_strict_lesser H' H'1).
intros x H'2; elim H'2; intros H'3 H'4; try exact H'4; clear H'2.
absurd (x = n); auto with *.
red in |- *; intros H'2; try exact H'2.
absurd (x < n); auto with *.
rewrite H'2.
auto with *.
apply cardinal_unique with (E := F) (A := image_map f); auto with *.
Qed.
Parameter
cardinal_equal_included_equal :
forall (E : Setoid) (A B : part_set E) (n : nat),
cardinal A n -> cardinal B n -> included B A -> Equal B A.
Parameter
image_full_surjective :
forall (E F : Setoid) (f : MAP E F),
Equal (image_map f) (full F) -> surjective f.
Hint Resolve image_full_surjective: algebra.
Lemma finite_injective_surjective :
forall (E F : Setoid) (f : MAP E F) (n : nat),
cardinal (full E) n -> cardinal (full F) n -> injective f -> surjective f.
intros E F f n H' H'0 H'1; try assumption.
generalize (cardinal_image_injective H' H'1).
intros H'2; try assumption.
apply image_full_surjective; auto with *.
unfold image_map in |- *.
apply cardinal_equal_included_equal with n; auto with *.
Qed.
Parameter
surjective_image_full :
forall (E F : Setoid) (f : MAP E F),
surjective f -> Equal (image_map f) (full F).
Hint Resolve surjective_image_full: algebra.
Lemma finite_surjective_injective :
forall (E F : Setoid) (f : MAP E F) (n : nat),
cardinal (full E) n -> cardinal (full F) n -> surjective f -> injective f.
intros E F f n H' H'0 H'1; try assumption.
apply cardinal_image_equal_injective with n; auto with *.
apply cardinal_comp with (full F) n; auto with *.
apply Sym; auto with *.
Qed.
Lemma not_included_exist :
forall (E : Setoid) (A B : part_set E),
included B A -> ~ Equal B A -> exists x : E, in_part x A /\ ~ in_part x B.
intros E A B; simpl in |- *.
unfold eq_part in |- *; simpl in |- *.
intros H' H'0; try assumption.
cut
(ex
(fun x : E =>
~ ((in_part x B -> in_part x A) /\ (in_part x A -> in_part x B)))).
intros H'1; try assumption.
elim H'1; intros x E0; try exact E0; clear H'1.
exists x; split; [ try assumption | idtac ].
red in E0.
apply NNPP.
red in |- *; intros H'1; try exact H'1.
lapply E0; [ intros H'2; apply H'2; clear E0 | clear E0 ].
split; [ idtac | intros H'2; try assumption ].
intros H'2; try assumption.
apply H'; auto with *.
absurd (in_part x A); auto with *.
red in |- *.
red in E0.
intros H'1; try assumption.
lapply E0; [ intros H'2; apply H'2; clear E0 | clear E0 ].
split; [ try assumption | idtac ].
intros H'2; try assumption.
apply H'; auto with *.
auto with *.
apply
not_all_ex_not
with
(P := fun x : E =>
(in_part x B -> in_part x A) /\ (in_part x A -> in_part x B));
auto with *.
Qed.
Lemma cardinal_included :
forall (E : Setoid) (A : part_set E) (n : nat),
cardinal A n ->
forall B : part_set E,
included B A -> exists m : nat, cardinal B m /\ m <= n.
intros E A n H'; try assumption.
apply
cardinal_ind2
with
(P := fun (n : nat) (A : part_set E) (c : cardinal A n) =>
forall B : part_set E,
included B A -> ex (fun m : nat => cardinal B m /\ m <= n)).
intros A0 H'0 B H'1; exists 0; split; [ try assumption | idtac ]; auto with *.
apply cardinal_empty.
inversion H'0.
cut (included B (empty E)); auto with *.
apply included_comp with B A0; auto with *.
intros n0 H'0 A0 B x H'1 H'2 H'3 B0 H'4; try assumption.
case (classic (Equal B0 A0)); intros.
exists (S n0); split; [ idtac | try assumption ].
apply cardinal_comp with A0 (S n0); auto with *.
auto with *.
case (not_included_exist H'4 H).
intros x0 H'5; try assumption.
elim H'5; intros H'6 H'7; try exact H'6; clear H'5.
lapply (H'0 (minus_part A0 x0));
[ intros H'8; elim (H'8 B0);
[ intros m E0; elim E0; intros H'11 H'12; try exact H'11; clear E0
| idtac ]
| idtac ]; auto with *.
exists m; split; [ try assumption | idtac ].
apply le_trans with n0; auto with *.
unfold minus_part in |- *; simpl in |- *.
red in |- *.
intros x1 H'5; try assumption.
simpl in |- *.
split; [ try assumption | idtac ].
apply H'4; auto with *.
red in |- *.
intros H'9; try assumption.
apply H'7.
apply in_part_comp_l with x1; auto with *.
apply cardinal_S with A0 x0; auto with *.
apply Sym.
apply minus_add; auto with *.
auto with *.
Qed.
Lemma map_not_injective :
forall (A B : Setoid) (f : MAP A B) (n m : nat),
cardinal (full A) n -> cardinal (full B) m -> m < n -> ~ injective f.
intros A B f n m H' H'0 H'1; red in |- *; intros H'2; try exact H'2.
red in H'2.
case (tiroirs (E:=A) (F:=B) (f:=f) H' H'0 H'1); auto with *.
intros x H'3; try assumption.
elim H'3; intros y E; elim E; intros H'4 H'5; try exact H'4; clear E H'3;
auto with *.
Qed.
Definition finite (A : Setoid) := exists n : nat, cardinal (full A) n.