-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathCfield_facts.v
83 lines (74 loc) · 2.88 KB
/
Cfield_facts.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
(* This program is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1 *)
(* of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU Lesser General Public *)
(* License along with this program; if not, write to the Free *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA *)
Set Automatic Coercions Import.
Set Implicit Arguments.
Unset Strict Implicit.
Require Export Field_facts.
Require Export Cfield_cat.
(** Title "Basic properties of commutative fields." *)
Section Lemmas1.
Variable K : CFIELD.
Lemma CFIELD_com : forall x y : K, Equal (ring_mult x y) (ring_mult y x).
exact (cring_com_prf K).
Qed.
Hint Immediate CFIELD_com: algebra.
Lemma CFIELD_inverse_law2 :
forall x y : K,
~ Equal x (monoid_unit K) ->
~ Equal y (monoid_unit K) ->
Equal (field_inverse (ring_mult x y))
(ring_mult (field_inverse x) (field_inverse y)).
intros x y H' H'0; try assumption.
apply Trans with (ring_mult (field_inverse y) (field_inverse x):K);
auto with algebra.
Qed.
Hint Resolve CFIELD_inverse_law2: algebra.
Lemma CFIELD_simpl_l :
forall x y : K,
~ Equal y (monoid_unit K) -> Equal (ring_mult y (field_div x y)) x.
intros x y H'; try assumption.
apply Trans with (ring_mult (field_div x y) y:K); auto with algebra.
Qed.
Hint Resolve CFIELD_simpl_l: algebra.
Comments "Normalisation.".
Lemma CFIELD_mult4 :
forall a b c d : K,
Equal (ring_mult (ring_mult a b) (ring_mult c d))
(ring_mult (ring_mult a c) (ring_mult b d)).
exact (CRING_mult4 (R1:=K)).
Qed.
Hint Resolve CRING_mult4: algebra.
Lemma CFIELD_mult3 :
forall x y z : K,
Equal (ring_mult x (ring_mult y z)) (ring_mult y (ring_mult x z)).
exact (CRING_mult3 (R1:=K)).
Qed.
Hint Resolve CFIELD_mult3: algebra.
Lemma CFIELD_mult3bis :
forall x y z : K,
Equal (ring_mult (ring_mult x y) z) (ring_mult (ring_mult x z) y).
exact (CRING_mult3bis (R1:=K)).
Qed.
Hint Resolve CFIELD_mult3bis: algebra.
Lemma CFIELD_mult_div_r :
forall x y z : K,
Equal (ring_mult (field_div y z) x) (field_div (ring_mult y x) z).
unfold field_div in |- *.
auto with algebra.
Qed.
End Lemmas1.
Hint Resolve CFIELD_inverse_law2 CFIELD_simpl_l CFIELD_mult4 CFIELD_mult3
CFIELD_mult3bis CFIELD_mult_div_r: algebra.
Hint Immediate CFIELD_com: algebra.