-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathCantor_Bernstein.v
185 lines (174 loc) · 6.74 KB
/
Cantor_Bernstein.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
(* This program is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1 *)
(* of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU Lesser General Public *)
(* License along with this program; if not, write to the Free *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA *)
Set Implicit Arguments.
Unset Strict Implicit.
Require Export Parts2.
(** Title "Cantor Bernstein theorem" *)
Comments
"We prove that if there is an injection from A to B, and an injection from B to A".
Comments "then there is a bijection between A and B.".
Section Cantor_Bernstein.
Variable E F : Setoid.
Variable f : MAP E F.
Variable g : MAP F E.
Hypothesis finj : injective f.
Hypothesis ginj : injective g.
Let h (X : part_set E) := compl (image g (compl (image f X))).
Let h_incr : forall A B : part_set E, included A B -> included (h A) (h B).
unfold h in |- *.
auto with algebra.
Qed.
Hint Resolve h_incr: algebra.
Let PX : part_set (part_set E).
apply (Build_Predicate (Pred_fun:=fun A : part_set E => included A (h A))).
red in |- *.
intros x y H' H'0; try assumption.
apply included_comp with x (h x); auto with algebra.
unfold h in |- *.
auto with algebra.
Defined.
Let X := union_part PX.
Let XhX : included X (h X).
unfold X in |- *.
apply union_part_upper_bound.
intros A H'; try assumption.
apply included_trans with (h A); auto with algebra.
Qed.
Let hXX : included (h X) X.
unfold X in |- *.
apply union_part_included.
simpl in |- *.
apply h_incr.
exact XhX.
Qed.
Let PXeq : Equal (h X) X.
apply included_antisym.
exact hXX.
exact XhX.
Qed.
Hint Resolve PXeq hXX XhX: algebra.
Let img : Equal (image g (compl (image f X))) (compl X).
apply Trans with (compl (h X)); auto with algebra.
unfold h in |- *; auto with algebra.
Qed.
Hint Resolve img: algebra.
Hypothesis
partial_section :
forall (E F : Setoid) (f : MAP E F),
injective f -> exists g : MAP F E, Equal (comp_map_map g f) (Id E).
Hypothesis
map_extend :
forall (E F : Setoid) (f g : MAP E F) (A : part_set E),
exists b : MAP E F,
(forall x : E, in_part x A -> Equal (b x) (f x)) /\
(forall x : E, ~ in_part x A -> Equal (b x) (g x)).
Theorem Cantor_Berstein : exists b : MAP E F, bijective b.
case (partial_section ginj).
intros g1 H'; try assumption.
case (map_extend f g1 X).
intros b H'1; try assumption.
exists b; try assumption.
elim H'1; intros H'2 H'3; try exact H'2; clear H'1.
red in |- *.
split; [ try assumption | idtac ].
red in |- *.
intros x y H'0; try assumption.
case (compl_not_compl X x); intros.
case (compl_not_compl X y); intros.
apply finj.
apply Trans with (b y); auto with algebra.
apply Trans with (b x); auto with algebra.
apply Sym; auto with algebra.
cut (in_part y (image g (compl (image f X)))).
intros H'1; try assumption.
generalize (image_in H'1).
intros H'4; try assumption.
elim H'4; intros x0 E0; try exact E0; clear H'4.
elim E0; intros H'4 H'5; try exact H'5; clear E0.
absurd (in_part x0 (compl (image f X))); auto with algebra.
apply not_in_comp_l with (Ap (Id F) x0); auto with algebra.
apply not_in_comp_l with (Ap (comp_map_map g1 g) x0); auto with algebra.
apply not_in_comp_l with (Ap g1 (Ap g x0)); auto with algebra.
apply not_in_comp_l with (Ap g1 y); auto with algebra.
apply not_in_comp_l with (Ap b y); auto with algebra.
apply not_in_comp_l with (Ap b x); auto with algebra.
apply not_in_comp_l with (Ap f x); auto with algebra.
apply Sym; auto with algebra.
apply in_part_comp_r with (compl X); auto with algebra.
case (compl_not_compl X y); intros.
cut (in_part x (image g (compl (image f X)))).
intros H'1; try assumption.
generalize (image_in H'1).
intros H'4; try assumption.
elim H'4; intros x0 E0; try exact E0; clear H'4.
elim E0; intros H'4 H'5; try exact H'5; clear E0.
absurd (in_part x0 (compl (image f X))); auto with algebra.
apply not_in_comp_l with (Ap (Id F) x0); auto with algebra.
apply not_in_comp_l with (Ap (comp_map_map g1 g) x0); auto with algebra.
apply not_in_comp_l with (Ap g1 (Ap g x0)); auto with algebra.
apply not_in_comp_l with (Ap g1 x); auto with algebra.
apply not_in_comp_l with (Ap b x); auto with algebra.
apply not_in_comp_l with (Ap b y); auto with algebra.
apply not_in_comp_l with (Ap f y); auto with algebra.
apply Sym; auto with algebra.
apply in_part_comp_r with (compl X); auto with algebra.
cut (in_part x (image g (compl (image f X)))).
cut (in_part y (image g (compl (image f X)))).
intros H'1 H'4; try assumption.
generalize (image_in H'1).
generalize (image_in H'4).
intros H'5 H'6; try assumption.
elim H'6; intros x0 E0; elim E0; intros H'7 H'8; try exact H'7; clear E0 H'6.
elim H'5; intros x1 E0; elim E0; intros H'6 H'9; try exact H'6; clear E0 H'5.
apply Trans with (Ap g x1); auto with algebra.
apply Trans with (Ap g x0); auto with algebra.
cut (Equal x1 x0).
auto with algebra.
cut (Equal (Ap (Id F) x1) (Ap (Id F) x0)).
auto with algebra.
cut (Equal (Ap (comp_map_map g1 g) x1) (Ap (comp_map_map g1 g) x0)).
intros H'5; try assumption.
apply Trans with (Ap (comp_map_map g1 g) x0); auto with algebra.
apply Trans with (Ap (comp_map_map g1 g) x1); auto with algebra.
simpl in |- *.
unfold comp_map_fun in |- *.
apply Trans with (Ap g1 x); auto with algebra.
apply Trans with (Ap g1 y); auto with algebra.
apply Trans with (Ap b x); auto with algebra.
apply Sym; auto with algebra.
apply Trans with (Ap b y); auto with algebra.
apply in_part_comp_r with (compl X); auto with algebra.
apply in_part_comp_r with (compl X); auto with algebra.
red in |- *.
intros y; try assumption.
case (compl_not_compl (image f X) y); intros.
generalize (image_in H).
intros H'0; try assumption.
elim H'0; intros x E0; elim E0; intros H'1 H'4; try exact H'1; clear E0 H'0.
exists x; try assumption.
apply Trans with (Ap f x); auto with algebra.
apply Sym; auto with algebra.
exists (g y); try assumption.
apply Trans with (Ap g1 (Ap g y)); auto with algebra.
apply Sym.
apply Trans with (Ap (Id F) y); auto with algebra.
apply Trans with (Ap (comp_map_map g1 g) y); auto with algebra.
apply Sym.
apply H'3.
cut (in_part (Ap g y) (compl X)).
auto with algebra.
apply in_part_comp_r with (image g (compl (image f X))); auto with algebra.
Qed.
End Cantor_Bernstein.