-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathevaluate.py
521 lines (438 loc) · 16.8 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
"""
Utilities for evaluation.
"""
from common import *
import argparse
import itertools
from tqdm import tqdm
from collections import defaultdict
import datasets
import json
import tempfile
import os
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score
def gather_descendants(tree: TreeNode) -> DefaultDict[str, Set[str]]:
descendants = defaultdict(set)
for node in tree.traverse("postorder"):
if node.name.startswith("sent"):
descendants[node.name].add(node.name)
for child in node.children:
descendants[node.name].update(descendants[child.name])
return descendants
def intersection_over_union(a: Set[Any], b: Set[Any]) -> float:
return len(a.intersection(b)) / len(a.union(b))
def align(tree_pred: TreeNode, tree_gt: TreeNode) -> Dict[str, str]:
"""
Align nodes in the predicted tree to nodes in the ground truth tree.
"""
alignment: Dict[str, str] = {}
if tree_pred is None:
return alignment
descendants_pred = gather_descendants(tree_pred)
descendants_gt = gather_descendants(tree_gt)
for node in tree_pred.traverse():
if node.name.startswith("sent"):
alignment[node.name] = (
node.name if tree_gt.get_leaves_by_name(node.name) != [] else "dummy"
)
else:
max_iou = 0.0
max_node = None
for node_gt in tree_gt.traverse():
if node_gt.name.startswith("sent"):
continue
iou = intersection_over_union(
descendants_gt[node_gt.name], descendants_pred[node.name]
)
if iou > max_iou:
max_iou = iou
max_node = node_gt
alignment[node.name] = max_node.name if max_node is not None else "dummy"
return alignment
def calculate_f1(tp: float, fp: float, p: float) -> float:
prec = 1.0 if tp + fp == 0 else tp / (tp + fp)
rec = 1.0 if p == 0 else tp / p
return 0.0 if prec + rec == 0.0 else 2 * prec * rec / (prec + rec)
def evaluate_leaves(tree_pred: TreeNode, tree_gt: TreeNode) -> Tuple[float, float]:
if tree_pred is None:
return 0.0, 0.0
sents_gt = {node.name for node in tree_gt.get_leaves()}
sents_pred = set()
for node in tree_pred.get_leaves():
if node.name not in sents_gt:
node.add_feature("error", "leaf")
sents_pred.add(node.name)
tp = len(sents_pred.intersection(sents_gt))
fp = len(sents_pred.difference(sents_gt))
fn = len(sents_gt.difference(sents_pred))
prec = 1.0 if tp + fp == 0 else tp / (tp + fp)
rec = 1.0 if tp + fn == 0 else tp / (tp + fn)
f1 = 2 * prec * rec / (prec + rec) if prec + rec > 0.0 else 0.0
em = float(f1 == 1.0)
return em, f1
def evaluate_steps(
tree_pred: TreeNode, tree_gt: TreeNode, alignment: Dict[str, str]
) -> Tuple[float, float]:
if tree_pred is None:
return 0.0, 0.0
steps_gt = set()
for node in tree_gt.traverse():
if node.is_leaf():
continue
steps_gt.add(
(tuple(sorted([child.name for child in node.children])), node.name)
)
steps_pred = set()
for node in tree_pred.traverse():
if node.is_leaf():
continue
step = (
tuple(sorted([alignment[child.name] for child in node.children])),
alignment[node.name],
)
steps_pred.add(step)
if step not in steps_gt:
node.add_feature("error", "step")
tp = len(steps_pred.intersection(steps_gt))
fp = len(steps_pred.difference(steps_gt))
fn = len(steps_gt.difference(steps_pred))
prec = 1.0 if tp + fp == 0 else tp / (tp + fp)
rec = 1.0 if tp + fn == 0 else tp / (tp + fn)
f1 = 2 * prec * rec / (prec + rec) if prec + rec > 0.0 else 0.0
em = float(f1 == 1.0)
return em, f1
def evaluate_intermediates(
tree_pred: TreeNode, tree_gt: TreeNode, alignment: Dict[str, str], bleurt: Any
) -> Tuple[float, float]:
if tree_pred is None:
return 0.0, 0.0
ints_gt = {node.name for node in tree_gt.traverse() if not node.is_leaf()}
tp = fp = 0
nodes_pred = []
sents_pred = []
nodes_gt = []
sents_gt = []
for node in tree_pred.traverse():
if node.is_leaf():
continue
if alignment[node.name] == "dummy":
fp += 1
node.add_feature("error", "intermediate")
else:
nodes_pred.append(node)
nodes_gt.append(tree_gt.search_nodes(name=alignment[node.name])[0])
sents_pred.append(node.sent)
sents_gt.append(nodes_gt[-1].sent)
similarities = bleurt.compute(predictions=sents_pred, references=sents_gt)["scores"]
ints = set()
for k, s in enumerate(similarities):
if s >= 0.28:
tp += 1
ints.add(nodes_gt[k].name)
else:
fp += 1
nodes_pred[k].add_feature("error", "intermediate")
prec = 1.0 if tp + fp == 0 else tp / (tp + fp)
rec = 1.0 if len(ints) == 0 else len(ints) / len(ints_gt)
f1 = 2 * prec * rec / (prec + rec) if prec + rec > 0.0 else 0.0
em = float(f1 == 1.0)
return em, f1
def highlight_errors(tree: TreeNode) -> None:
"Highlight errors in the tree."
for node in tree.traverse():
name = TextFace(node.name)
sent = TextFace(node.sent)
if hasattr(node, "error"):
if node.error == "step":
node.set_style(NodeStyle(vt_line_width=10, vt_line_color="LightSalmon"))
for child in node.children:
child.set_style(
NodeStyle(hz_line_width=10, hz_line_color="LightSalmon")
)
else:
sent.background.color = name.background.color = "LightSalmon"
node.add_face(name, column=0)
node.add_face(sent, column=0)
if hasattr(node, "score"):
node.add_face(TextFace(node.score), column=0)
def get_tree_style(proof: str, score: Optional[float], is_gt: bool):
style = TreeStyle()
style.branch_vertical_margin = 100
style.show_leaf_name = False
style.show_scale = False
style.title.add_face(TextFace("Ground truth" if is_gt else "Predicted"), column=0)
style.title.add_face(TextFace(proof), column=0)
if score is not None:
style.title.add_face(TextFace(f"Verifier score: {score}"), column=0)
return style
def evaluate_example(ex: Example, bleurt: Any, output_pdf: bool) -> Any:
hypothesis = normalize(ex["hypothesis"]).strip()
context = ex["context"]
proof_gt = normalize(ex["proof_gt"]).strip()
tree_gt = deserialize(hypothesis, context, proof_gt, strict=False)
proof_gt = serialize(tree_gt)
assert tree_gt is not None
em = {}
f1 = {}
with tempfile.TemporaryDirectory() as dir_path:
if output_pdf:
highlight_errors(tree_gt)
file_path = os.path.join(dir_path, "tree_gt.pdf")
style = get_tree_style(
proof_gt, ex.get("verifier_score_gt", None), is_gt=True
)
tree_gt.render(file_path, tree_style=style)
pdf_pages = [PdfFileReader(open(file_path, "rb")).getPage(0)]
tree_pred = deserialize(hypothesis, context, ex["proof_pred"])
proof_pred = serialize(tree_pred)
alignment = align(tree_pred, tree_gt)
em_leaves, f1_leaves = evaluate_leaves(tree_pred, tree_gt)
em["leaves"] = em_leaves
f1["leaves"] = f1_leaves
em_steps, f1_steps = evaluate_steps(tree_pred, tree_gt, alignment)
em["steps"] = em_steps
f1["steps"] = f1_steps
if bleurt is not None:
em_intermediates, f1_intermediates = evaluate_intermediates(
tree_pred, tree_gt, alignment, bleurt
)
em["intermediates"] = em_intermediates
f1["intermediates"] = f1_intermediates
correct = (em["leaves"] == 1.0) and (em["steps"] == 1.0)
if bleurt is not None:
correct = correct and (em["intermediates"] == 1.0)
em["proof"] = f1["proof"] = 1.0 if correct else 0.0
if output_pdf and tree_pred is not None:
highlight_errors(tree_pred)
file_path = os.path.join(dir_path, f"tree_pred.pdf")
style = get_tree_style(
proof_pred,
ex["verifier_scores_pred"] if "verifier_scores_pred" in ex else None,
is_gt=False,
)
tree_pred.render(file_path, tree_style=style)
pdf_pages.append(PdfFileReader(file_path).getPage(0))
tree_depth = int(tree_gt.get_farthest_leaf()[1])
tree_size = 1 + len(tree_gt.get_descendants())
if output_pdf:
margin = 50
total_width = np.max([page.mediaBox.upperRight[0] for page in pdf_pages])
total_height = np.sum(
[page.mediaBox.upperRight[1] + margin for page in pdf_pages]
)
combined_page = PageObject.createBlankPage(None, total_width, total_height)
offset = 0
for page in pdf_pages[::-1]:
combined_page.mergeTranslatedPage(page, 0, offset)
offset += page.mediaBox.upperRight[1] + margin
return em, f1, tree_depth, tree_size, combined_page
else:
return em, f1, tree_depth, tree_size, None
def evaluate_entailmentbank(
results: List[Any],
eval_intermediates: bool = True,
output_pdf: Optional[str] = None,
) -> Any:
"""
Evaluate predicted proof trees on EntailmentBank.
The implementation has minor differences from EntailmentBank's official evaluation code.
DO NOT use it for reporting results in papers. Use the official code instead.
"""
measures = ["leaves", "steps", "proof"]
if eval_intermediates:
measures.append("intermediates")
em = defaultdict(list)
f1 = defaultdict(list)
depth = []
size = []
bleurt = (
datasets.load_metric("bleurt", "bleurt-large-512")
if eval_intermediates
else None
)
if output_pdf is not None:
pdf_oup = PdfFileWriter()
for ex in tqdm(results):
em_i, f1_i, depth_i, size_i, page = evaluate_example(
ex, bleurt, output_pdf is not None
)
depth.append(depth_i)
size.append(size_i)
for m in measures:
em[m].append(em_i[m])
f1[m].append(f1_i[m])
if output_pdf:
pdf_oup.addPage(page)
if output_pdf is not None:
pdf_oup.write(open(output_pdf, "wb"))
depth_arr = np.array(depth)
print("Performance by depth:")
for d in np.unique(depth_arr):
mask = depth_arr == d
n = mask.sum()
print(f"{n} trees have depth {d}")
for m in measures:
print(
f"\t{m}: {(np.array(em[m]) * mask).sum() / n}\t{(np.array(f1[m]) * mask).sum() / n}"
)
size_arr = np.array(size)
print("Performance by size:")
for s in np.unique(size_arr):
mask = size_arr == s
n = mask.sum()
print(f"{n} trees have size {s}")
for m in measures:
print(
f"\t{m}: {(np.array(em[m]) * mask).sum() / n}\t{(np.array(f1[m]) * mask).sum() / n}"
)
return (
{m: np.mean(values) for m, values in em.items()},
{m: np.mean(values) for m, values in f1.items()},
)
def split_steps(proof: str) -> Set[Any]:
steps = set()
for s in proof.split(";"):
s = s.strip()
if s == "":
continue
if s.count(" -> ") != 1:
raise ValueError
premises, conclusion = s.split(" -> ")
steps.add((tuple(sorted(premises.split(" & "))), conclusion == "hypothesis"))
return steps
def check_ruletaker_proof(proof_pred: str, proofs_gt: str) -> bool:
"""
Check whether two RukeTaker proofs are equivalent.
"""
try:
proof_steps_pred = split_steps(proof_pred)
except ValueError:
return False
proofs_steps_gt = [split_steps(_) for _ in proofs_gt]
return proof_steps_pred in proofs_steps_gt
def process_results(results: List[Any]) -> Any:
assert len(results) % 2 == 0
n = len(results) // 2
scores = []
labels = []
depths = []
all_proofs = []
for i in range(n):
r_orig = results[2 * i]
r_neg = results[2 * i + 1]
assert r_orig["proof_gt"] == r_neg["proof_gt"]
assert r_orig["depth"] == r_neg["depth"]
assert r_orig["all_proofs"] == r_neg["all_proofs"]
assert r_neg["hypothesis"] == f"i don't think {r_orig['hypothesis']}"
scores.append([r_orig["score"], r_neg["score"]])
if r_orig["answer"] == True:
labels.append(0)
elif r_orig["answer"] == False:
labels.append(1)
else:
assert r_orig["answer"] == "Unknown"
labels.append(2)
depths.append(r_orig["depth"])
all_proofs.append(r_orig["all_proofs"])
return scores, labels, depths, all_proofs
def calculate_metrics(
y_pred: Any, y: Any, depths: Any, all_proofs: Any, results: Any
) -> Any:
"""
Calculate the answer accuracy and proof accuracy for RuleTaker.
"""
answer_is_correct = defaultdict(list)
n = len(y_pred)
for i in range(n):
d = depths[i]
answer_is_correct[d].append(y[i] == y_pred[i])
answer_accuracies = {k: np.mean(v) for k, v in answer_is_correct.items()}
answer_accuracies["overall"] = accuracy_score(y, y_pred)
proof_is_correct = defaultdict(list)
for i in range(n):
d = depths[i]
if y_pred[i] == 2:
proof_is_correct[d].append(y[i] == 2)
continue
if y_pred[i] == 0:
proof_pred = results[2 * i]["proof_pred"]
else:
proof_pred = results[2 * i + 1]["proof_pred"]
proof_is_correct[d].append(check_ruletaker_proof(proof_pred, all_proofs[i]))
proof_accuracies = {k: np.mean(v) for k, v in proof_is_correct.items()}
proof_accuracies["overall"] = np.mean(
list(itertools.chain.from_iterable(proof_is_correct.values()))
)
return answer_accuracies, proof_accuracies
def evaluate_ruletaker(
results_val: List[Any], results_test: Optional[List[Any]] = None
) -> Any:
"""
Evaluate on RuleTaker.
"""
scores_val, labels_val, depths_val, all_proofs_val = process_results(results_val)
scaler = StandardScaler()
X_val = scaler.fit_transform(np.array(scores_val))
y_val = np.array(labels_val, dtype=np.int64)
clf = LogisticRegression()
clf.fit(X_val, y_val)
y_val_pred = clf.predict(X_val)
answer_accuracies_val, proof_accuracies_val = calculate_metrics(
y_val_pred, y_val, depths_val, all_proofs_val, results_val
)
if results_test is None:
return answer_accuracies_val, proof_accuracies_val
scores_test, labels_test, depths_test, all_proofs_test = process_results(
results_test
)
X_test = scaler.transform(np.array(scores_test))
y_test = np.array(labels_test, dtype=np.int64)
y_test_pred = clf.predict(X_test)
answer_accuracies_test, proof_accuracies_test = calculate_metrics(
y_test_pred, y_test, depths_test, all_proofs_test, results_test
)
return (
answer_accuracies_val,
proof_accuracies_val,
answer_accuracies_test,
proof_accuracies_test,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("dataset", type=str, choices=["entailmentbank", "ruletaker"])
parser.add_argument("--path", type=str)
parser.add_argument("--path-val", type=str)
parser.add_argument("--path-test", type=str)
parser.add_argument("--skip-intermediates", action="store_true")
parser.add_argument("--output-pdf", type=str, help="Path for outputing the PDF")
args = parser.parse_args()
print(args)
if args.output_pdf is not None:
from ete3 import TextFace, TreeStyle, NodeStyle
from PyPDF3 import PdfFileWriter, PdfFileReader
from PyPDF3.pdf import PageObject
if args.dataset == "entailmentbank":
results = json.load(open(args.path))
em, f1 = evaluate_entailmentbank(
results, not args.skip_intermediates, args.output_pdf
)
print("Exact match: ", em)
print("F1: ", f1)
else:
results_val = json.load(open(args.path_val))
results_test = json.load(open(args.path_test))
(
answer_accuracies_val,
proof_accuracies_val,
answer_accuracies_test,
proof_accuracies_test,
) = evaluate_ruletaker(results_val, results_test)
print("Validation results:")
print("Answer: ", answer_accuracies_val)
print("Proof: ", proof_accuracies_val)
print("Testing results:")
print("Answer: ", answer_accuracies_test)
print("Proof: ", proof_accuracies_test)