-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathdatamodule.py
485 lines (437 loc) · 15.5 KB
/
datamodule.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
"""
Dataloading for EntailmentBank and RuleTaker.
"""
from copy import deepcopy
from common import *
from prover.proof import Proof, InvalidProofStep
import random
import json
import itertools
from torch.utils.data import Dataset, DataLoader
import pytorch_lightning as pl
from transformers import AutoTokenizer
def read_entailmentbank_proofs(path: str, is_train: bool) -> List[Example]:
"""
Load the EntailmentBank dataset.
"""
data = []
num_invalid = 0
for line in open(path):
ex = json.loads(line)
hypothesis = normalize(ex["hypothesis"])
context = extract_context(ex["context"])
proof_text = normalize(ex["proof"].strip())
try:
proof = Proof(
context,
hypothesis,
proof_text,
strict=is_train,
requires_complete=is_train,
)
data.append({"proof": proof})
except InvalidProofStep:
assert is_train
num_invalid += 1
print(f"{len(data)} proofs loaded. {num_invalid} invalid ones removed.")
return data
def read_ruletaker_proofs(path: str, is_train: bool) -> List[Example]:
"""
Load the RuleTaker dataset.
"""
data = []
num_invalid = 0
for line in open(path):
ex = json.loads(line)
hypothesis = normalize(ex["hypothesis"])
context = extract_context(ex["context"])
if is_train:
for proof in ex["proofs"]:
try:
prf = Proof(
context,
hypothesis,
normalize(proof.strip()),
strict=True,
requires_complete=True,
)
ans = ex["answer"]
assert ans == True
data.append(
{
"answer": ans,
"depth": ex["depth"],
"proof": prf,
"all_proofs": ex["proofs"],
}
)
except InvalidProofStep:
num_invalid += 1
else:
proof = ex["proofs"][0] if len(ex["proofs"]) > 0 else ""
data.append(
{
"answer": ex["answer"],
"depth": ex["depth"],
"proof": Proof(
context,
hypothesis,
proof,
strict=False,
requires_complete=False,
),
"all_proofs": ex["proofs"],
}
)
if ex["answer"] == "Unknown":
ans = "Unknown"
else:
ans = not ex["answer"]
data.append(
{
"answer": ans,
"depth": ex["depth"],
"proof": Proof(
context,
f"i don't think {hypothesis}",
proof,
strict=False,
requires_complete=False,
),
"all_proofs": ex["proofs"],
}
)
print(f"{len(data)} proofs loaded. {num_invalid} invalid ones removed.")
return data
def collect_proved_subtrees(tree: TreeNode, prob: float) -> Iterable[TreeNode]:
if tree.is_leaf():
return []
elif random.random() < prob:
return [tree]
else:
return itertools.chain.from_iterable(
collect_proved_subtrees(child, prob) for child in tree.children
)
class EntireProofsDataset(Dataset): # type: ignore
def __init__(
self,
dataset: str,
path: str,
model_name: str,
max_input_len: int,
max_output_len: int,
is_train: bool,
) -> None:
super().__init__()
max_len = max(max_input_len, max_output_len)
self.tokenizer = AutoTokenizer.from_pretrained(
model_name, model_max_length=max_len
)
self.max_input_len = max_input_len
self.max_output_len = max_output_len
self.is_train = is_train
if dataset == "entailmentbank":
self.data = read_entailmentbank_proofs(path, is_train)
else:
assert dataset == "ruletaker"
self.data = read_ruletaker_proofs(path, is_train)
def __len__(self) -> int:
return len(self.data)
def __getitem__(self, idx: int) -> Example:
ex = self.data[idx]
proof = ex["proof"]
if self.is_train:
proof = proof.shuffle_context()
input_seq = f"$hypothesis$ = {proof.hypothesis} ; $context$ = {proof.serialize_context()}"
ex = deepcopy(ex)
ex["input_seq"] = input_seq
ex["output_seq"] = proof.proof_text
return ex
def collate(self, examples: List[Example]) -> Batch:
inp = [ex["input_seq"] for ex in examples]
input_seq = self.tokenizer(
inp,
padding="longest",
max_length=self.max_input_len,
truncation=True,
return_tensors="pt",
)
oup = [ex["output_seq"] for ex in examples]
output_seq = self.tokenizer(
oup,
padding="longest",
max_length=self.max_output_len,
truncation=True,
return_tensors="pt",
)
output_seq.input_ids[output_seq.input_ids == self.tokenizer.pad_token_id] = -100
batch = {
"input_seq": inp,
"input_seq_ids": input_seq.input_ids,
"input_seq_mask": input_seq.attention_mask,
"output_seq": oup,
"output_seq_ids": output_seq.input_ids,
"output_seq_mask": output_seq.attention_mask,
}
for k in examples[0].keys():
if k not in ("input_seq", "output_seq"):
batch[k] = [ex[k] for ex in examples]
return batch
class StepwiseDataset(Dataset): # type: ignore
def __init__(
self,
dataset: str,
path: str,
model_name: str,
max_input_len: int,
max_output_len: int,
sample_goal: str,
subtree_proved_prob: float,
subtree_proved_all_or_none: bool,
is_train: bool,
) -> None:
super().__init__()
max_len = max(max_input_len, max_output_len)
self.tokenizer = AutoTokenizer.from_pretrained(
model_name, model_max_length=max_len
)
self.max_input_len = max_input_len
self.max_output_len = max_output_len
self.sample_goal = sample_goal
self.subtree_proved_prob = subtree_proved_prob
self.subtree_proved_all_or_none = subtree_proved_all_or_none
self.is_train = is_train
if dataset == "entailmentbank":
self.data = read_entailmentbank_proofs(path, is_train)
else:
assert dataset == "ruletaker"
self.data = read_ruletaker_proofs(path, is_train)
def __len__(self) -> int:
return len(self.data)
def __getitem__(self, idx: int) -> Example:
ex = self.data[idx]
if self.is_train:
return self.get_example_train(ex)
else:
return self.get_example_eval(ex)
def collate(self, examples: List[Example]) -> Batch:
inp = [ex["input_seq"] for ex in examples]
input_seq = self.tokenizer(
inp,
padding="longest",
max_length=self.max_input_len,
truncation=True,
return_tensors="pt",
)
batch = {
"input_seq": inp,
"input_seq_ids": input_seq.input_ids,
"input_seq_mask": input_seq.attention_mask,
}
for k in examples[0].keys():
if k not in ("input_seq", "output_seq"):
batch[k] = [ex[k] for ex in examples]
if self.is_train:
oup = [ex["output_seq"] for ex in examples]
output_seq = self.tokenizer(
oup,
padding="longest",
max_length=self.max_output_len,
truncation=True,
return_tensors="pt",
)
output_seq.input_ids[
output_seq.input_ids == self.tokenizer.pad_token_id
] = -100
batch["output_seq"] = oup
batch["output_seq_ids"] = output_seq.input_ids
batch["output_seq_mask"] = output_seq.attention_mask
return batch
def get_example_train(self, ex: Example) -> Example:
proof = ex["proof"].shuffle_context()
# Sample the proof step.
tree = proof.to_tree()
int_node = random.choice(get_internal_nodes(tree))
# Sample the goal.
if self.sample_goal == "hypothesis":
goal_node = tree.get_tree_root()
else:
assert self.sample_goal == "intermediates"
ancestors = int_node.get_ancestors()
assert int_node not in ancestors
ancestors.append(int_node)
goal_node = random.choice(ancestors)
# Sample the partial proof.
proved_subtrees = [node for node in int_node.children if not node.is_leaf()]
if int_node is not goal_node:
unproved_child = int_node
for node in int_node.iter_ancestors():
for child in node.children:
if child is unproved_child or child.is_leaf():
continue
if self.subtree_proved_all_or_none:
if random.random() < self.subtree_proved_prob:
proved_subtrees.append(child)
else:
proved_subtrees.extend(
collect_proved_subtrees(child, self.subtree_proved_prob)
)
if node is goal_node:
break
else:
unproved_child = node
proved_subtrees.reverse()
random.shuffle(proved_subtrees)
partial_proof = " ".join(serialize(t) for t in proved_subtrees)
# goal_context
input_seq = f"$hypothesis$ = {goal_node.sent} ; $context$ = {proof.serialize_context()} ; $proof$ = {partial_proof}"
premises = [node.name for node in int_node.children]
random.shuffle(premises)
output_seq = " & ".join(premises)
if goal_node is int_node:
output_seq = output_seq + " -> hypothesis;"
else:
output_seq = output_seq + f" -> int: {int_node.sent};"
ex = deepcopy(ex)
ex["proof"] = proof
ex["input_seq"] = input_seq
ex["output_seq"] = output_seq
return ex
def get_example_eval(self, ex: Example) -> Example:
proof = ex["proof"]
context_text = proof.serialize_context()
input_seq = f"$hypothesis$ = {proof.hypothesis} ; $context$ = {context_text} ; $proof$ = "
ex = deepcopy(ex)
ex["input_seq"] = input_seq
return ex
class ProofDataModule(pl.LightningDataModule):
def __init__(
self,
dataset: str,
stepwise: bool,
sample_goal: str,
model_name: str,
max_input_len: int,
max_output_len: int,
batch_size: int,
num_workers: int,
path_train: str,
path_val: str,
path_test: str,
subtree_proved_prob: float,
subtree_proved_all_or_none: bool,
) -> None:
super().__init__()
assert dataset in ("entailmentbank", "ruletaker")
self.dataset = dataset
self.stepwise = stepwise
self.sample_goal = sample_goal
self.model_name = model_name
self.max_input_len = max_input_len
self.max_output_len = max_output_len
self.batch_size = batch_size
self.num_workers = num_workers
self.path_train = path_train
self.path_val = path_val
self.path_test = path_test
self.subtree_proved_prob = subtree_proved_prob
self.subtree_proved_all_or_none = subtree_proved_all_or_none
def prepare_data(self) -> None:
pass
def setup(self, stage: Optional[str] = None) -> None:
if stage in (None, "fit"):
if self.stepwise:
self.ds_train = StepwiseDataset(
self.dataset,
self.path_train,
self.model_name,
self.max_input_len,
self.max_output_len,
self.sample_goal,
self.subtree_proved_prob,
self.subtree_proved_all_or_none,
is_train=True,
)
else:
self.ds_train = EntireProofsDataset( # type: ignore
self.dataset,
self.path_train,
self.model_name,
self.max_input_len,
self.max_output_len,
is_train=True,
)
if stage in (None, "fit", "validate"):
if self.stepwise:
self.ds_val = StepwiseDataset(
self.dataset,
self.path_val,
self.model_name,
self.max_input_len,
self.max_output_len,
self.sample_goal,
self.subtree_proved_prob,
self.subtree_proved_all_or_none,
is_train=False,
)
else:
self.ds_val = EntireProofsDataset( # type: ignore
self.dataset,
self.path_val,
self.model_name,
self.max_input_len,
self.max_output_len,
is_train=False,
)
if stage in (None, "test"):
if self.stepwise:
self.ds_test = StepwiseDataset(
self.dataset,
self.path_test,
self.model_name,
self.max_input_len,
self.max_output_len,
self.sample_goal,
self.subtree_proved_prob,
self.subtree_proved_all_or_none,
is_train=False,
)
else:
self.ds_test = EntireProofsDataset( # type: ignore
self.dataset,
self.path_test,
self.model_name,
self.max_input_len,
self.max_output_len,
is_train=False,
)
def train_dataloader(self) -> DataLoader: # type: ignore
return DataLoader(
self.ds_train,
self.batch_size,
shuffle=True,
num_workers=self.num_workers,
collate_fn=self.ds_train.collate,
pin_memory=True,
drop_last=True,
)
def val_dataloader(self) -> DataLoader: # type: ignore
return DataLoader(
self.ds_val,
self.batch_size,
shuffle=False,
num_workers=self.num_workers,
collate_fn=self.ds_val.collate,
pin_memory=True,
drop_last=False,
)
def test_dataloader(self) -> DataLoader: # type: ignore
return DataLoader(
self.ds_test,
self.batch_size,
shuffle=False,
num_workers=self.num_workers,
collate_fn=self.ds_test.collate,
pin_memory=True,
drop_last=False,
)