-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathbench.py
141 lines (120 loc) · 4.24 KB
/
bench.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import gc
import os
import sys
import torch
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
from vllm.model_executor.parallel_utils import parallel_state
sys.path.append(os.getcwd())
from common.base import BaseBenchmarkClass # noqa
from common.utils import launch_cli, make_report # noqa
class VLLMBenchmark(BaseBenchmarkClass):
def __init__(
self,
model_path: str,
model_name: str,
benchmark_name: str,
precision: str,
device: str,
experiment_name: str,
) -> None:
assert device == "cuda", ValueError("Only supported device is 'cuda'")
assert precision in ["float16", "float32", "int4"], ValueError(
"supported precision are: 'float16', 'float32' and 'int4'"
)
super().__init__(
model_name=model_name,
model_path=model_path,
benchmark_name=benchmark_name,
experiment_name=experiment_name,
precision=precision,
device=device,
)
if model_name == "llama":
self.tokenizer_folder = os.path.join(
os.getcwd(), "models", "llama-2-7b-chat-hf"
)
else:
self.tokenizer_folder = os.path.join(
os.getcwd(), "models", "mistral-7b-v0.1-instruct-hf"
)
def load_model_and_tokenizer(self):
if self.precision == "int4":
self.model = LLM(
model=self.model_path, quantization="AWQ", tensor_parallel_size=1
)
else:
self.model = LLM(model=self.model_path)
self.model.dtype = self.precision
self.tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_folder)
return self
def preprocess(
self, prompt: str, chat_mode: bool = True, for_benchmarks: bool = True
):
if chat_mode:
template = self.get_chat_template_with_instruction(
prompt=prompt, for_benchmarks=for_benchmarks
)
prompt = self.tokenizer.apply_chat_template(template, tokenize=False)
tokenized_input = self.tokenizer.encode(text=prompt)
return {
"prompt": prompt,
"input_tokens": tokenized_input,
"tensor": None,
"num_input_tokens": len(tokenized_input),
}
def run_model(self, inputs: dict, max_tokens: int, temperature: float) -> dict:
prompt = [inputs["prompt"]]
sampling_params = SamplingParams(max_tokens=max_tokens, temperature=temperature)
output = self.model.generate(prompt, sampling_params)
generated_text = output[0].outputs[0].text
generated_tokens = output[0].outputs[0].token_ids
return {
"output_tokens": generated_tokens,
"num_output_tokens": len(generated_tokens),
"output_prompt": generated_text,
}
def postprocess(self, output: dict) -> str:
return output["output_prompt"]
def on_exit(self):
if self.device == "cuda":
parallel_state.destroy_model_parallel()
del self.model
gc.collect()
torch.cuda.empty_cache()
torch.distributed.destroy_process_group()
torch.cuda.synchronize()
else:
del self.model
if __name__ == "__main__":
parser = launch_cli(description="vLLM Benchmark.")
args = parser.parse_args()
model_folder = os.path.join(os.getcwd(), "models")
model_name = (
f"{args.model_name}-2-7b-chat-"
if args.model_name == "llama"
else f"{args.model_name}-7b-v0.1-instruct-"
)
runner_dict = {
"cuda": [
{
"precision": "float32",
"model_path": os.path.join(model_folder, model_name + "hf"),
},
{
"precision": "float16",
"model_path": os.path.join(model_folder, model_name + "hf"),
},
{
"precision": "int4",
"model_path": os.path.join(model_folder, model_name + "autoawq"),
},
]
}
make_report(
args=args,
benchmark_class=VLLMBenchmark,
runner_dict=runner_dict,
benchmark_name="vLLM",
is_bench_pytorch=False,
)