-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodels.py
135 lines (117 loc) · 5.55 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import tensorflow as tf
import tflib as lib
import tflib.ops.linear
import tflib.ops.conv1d
import tflib.ops.gru_cell
import tflib.ops.embedding
def ResBlock(name, inputs, dim):
output = inputs
output = tf.nn.relu(output)
output = lib.ops.conv1d.Conv1D(name+'.1', dim, dim, 5, output)
output = tf.nn.relu(output)
output = lib.ops.conv1d.Conv1D(name+'.2', dim, dim, 5, output)
return inputs + (0.3*output)
def Generator(n_samples, seq_len, layer_dim, output_dim, prev_outputs=None):
output = make_noise(shape=[n_samples, 128])
output = lib.ops.linear.Linear('Generator.Input', 128, seq_len * layer_dim, output)
output = tf.reshape(output, [-1, layer_dim, seq_len])
output = ResBlock('Generator.1', output, layer_dim)
output = ResBlock('Generator.2', output, layer_dim)
output = ResBlock('Generator.3', output, layer_dim)
output = ResBlock('Generator.4', output, layer_dim)
output = ResBlock('Generator.5', output, layer_dim)
output = lib.ops.conv1d.Conv1D('Generator.Output', layer_dim, output_dim, 1, output)
output = tf.transpose(output, [0, 2, 1])
output = softmax(output, output_dim)
return output
def Discriminator(inputs, seq_len, layer_dim, input_dim):
output = tf.transpose(inputs, [0,2,1])
output = lib.ops.conv1d.Conv1D('Discriminator.Input', input_dim, layer_dim, 1, output)
output = ResBlock('Discriminator.1', output, layer_dim)
output = ResBlock('Discriminator.2', output, layer_dim)
output = ResBlock('Discriminator.3', output, layer_dim)
output = ResBlock('Discriminator.4', output, layer_dim)
output = ResBlock('Discriminator.5', output, layer_dim)
output = tf.reshape(output, [-1, seq_len * layer_dim])
output = lib.ops.linear.Linear('Discriminator.Output', seq_len * layer_dim, 1, output)
return output
def Generator_RNN1(n_samples, seq_len, rnn_layer, hidden_size, vocab_size, reuse=None):
"""
noise_shape: (batch_size, 128)
output_shape: (batch_size, seq_len, vocab_size)
"""
cell = tf.nn.rnn_cell.MultiRNNCell([
lib.ops.gru_cell.GRUCell('Generator.Rnn.' + str(i), hidden_size, reuse=reuse)
for i in range(rnn_layer)])
output = make_noise(shape=[n_samples, 128])
output = lib.ops.linear.Linear('Generator.Input', 128, seq_len * hidden_size, output)
output = tf.reshape(output, (-1, seq_len, hidden_size))
_outputs = tf.unstack(output, axis=1)
state = cell.zero_state(n_samples, tf.float32)
outputs = []
for i in range(seq_len):
output, state = cell(_outputs[i], state)
outputs.append(output)
output = tf.stack(outputs, axis=1)
# outputs, _ = tf.nn.dynamic_rnn(multi_layer_cell, output, [float(seq_len) for _ in range(n_samples)], dtype=tf.float32)
output = lib.ops.linear.Linear('Generator.Output', hidden_size, vocab_size, output) # reverse-embedding
output = softmax(output, vocab_size)
return output
def Discriminator_RNN1(inputs, seq_len, rnn_layer, hidden_size, vocab_size, reuse=None):
"""
input_shape: (batch_size, seq_len, vocab_size)
"""
multi_layer_cell = tf.nn.rnn_cell.MultiRNNCell([
lib.ops.gru_cell.GRUCell('Discriminator.Rnn.' + str(i), hidden_size, reuse=reuse)
for i in range(rnn_layer)])
# output = lib.ops.embedding.Embedding('Discriminator.Embedding', inputs, vocab_size, hidden_size)
output = lib.ops.linear.Linear('Discriminator.Input', vocab_size, hidden_size, inputs)
outputs, _ = tf.nn.dynamic_rnn(multi_layer_cell, inputs, [float(seq_len) for _ in range(inputs.shape[0])], dtype=tf.float32)
output = tf.reshape(outputs, [-1, seq_len * hidden_size])
output = lib.ops.linear.Linear('Discriminator.Output', seq_len * hidden_size, 1, output)
return output
def Generator_RNN2(n_samples, seq_len, rnn_layer, hidden_size, vocab_size, reuse=None):
"""
RNN decoder.
noise_shape: (batch_size, 128)
output_shape: (batch_size, seq_len, vocab_size)
"""
cell = tf.nn.rnn_cell.MultiRNNCell([
lib.ops.gru_cell.GRUCell('Generator.Rnn.' + str(i), hidden_size, reuse=reuse)
for i in range(rnn_layer)])
output = make_noise(shape=[n_samples, 128])
output = lib.ops.linear.Linear('Generator.Input', 128, hidden_size, output)
state = cell.zero_state(n_samples, tf.float32)
outputs = []
for _ in range(seq_len):
output, state = cell(output, state)
outputs.append(output)
output = tf.stack(outputs, axis=1)
output = lib.ops.linear.Linear('Generator.Output', hidden_size, vocab_size, output)
output = softmax(output, vocab_size)
return output
def Discriminator_RNN2(inputs, seq_len, rnn_layer, hidden_size, vocab_size, reuse=None):
"""
RNN encoder.
input_shape: (batch_size, seq_len, vocab_size)
"""
cell = tf.nn.rnn_cell.MultiRNNCell([
lib.ops.gru_cell.GRUCell('Discriminator.Rnn.' + str(i), hidden_size, reuse=reuse)
for i in range(rnn_layer)])
# output = lib.ops.embedding.Embedding('Discriminator.Input', inputs, vocab_size, hidden_size)
output = lib.ops.linear.Linear('Discriminator.Input', vocab_size, hidden_size, inputs)
outputs = tf.unstack(output, axis=1)
state = cell.zero_state(inputs.shape[0], tf.float32)
for i in range(seq_len):
output, state = cell(outputs[i], state)
output = lib.ops.linear.Linear('Discriminator.Output', hidden_size, 1, output)
return output
def softmax(logits, num_classes):
return tf.reshape(
tf.nn.softmax(
tf.reshape(logits, [-1, num_classes])
),
tf.shape(logits)
)
def make_noise(shape):
return tf.random_normal(shape)