-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path.Rhistory
512 lines (512 loc) · 22.8 KB
/
.Rhistory
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
Count = 0
)
# Iterate over tags and update Count using regex
for (i in seq_along(year_df$Tags)) {
tag <- year_df$Tags[i]
regex_pattern <- paste0("\\b", tag, "\\b") # Use word boundaries to match whole tags
year_df$Count[i] <- sum(grepl(regex_pattern, DF$Manual.Tags[DF$Publication.Year == year]))
}
# Bind the dataframe to DDFF
DDFF <- rbind(DDFF, year_df)
}
# Reset row names
rownames(DDFF) <- NULL
# Plot the bar chart
gg_plot <- ggplot(DDFF, aes(x = Publication.Year, y = Count, fill = Tags)) +
geom_bar(stat = "identity", position = "stack") +
labs(title = "Distribution of tags throught the years",
x = "Publication Year",
y = "Count") +
theme_minimal()
print(gg_plot)
# Save the ggplot to a PDF file
file_path <- file.path(output_folder, "tags_distributed_by_year.pdf")
ggsave(file_path, plot = gg_plot, width = 8, height = 6)
# Use write.csv to export the top tags to a CSV file
file_path <- file.path(output_folder, "tags_distributed_by_year.csv")
write.csv(DDFF, file = file_path, row.names = FALSE)
# ANALYSIS : the distribution of 3 tags only
# Assuming your data frame is named DF with a column Tags
DF <- subset1_ZOTEROLIB
# Create an empty dataframe DDFF
DDFF <- data.frame()
# Create a small set of 3 tags
small_set_tags <- tags_counts_df %>%
filter(Tag %in% c("_therapy", "_mental disorder", "_well-being"))
# Iterate over unique Publication.Year values
for (year in unique(DF$Publication.Year)) {
# Extract tags for the current year
year_tags <- unlist(strsplit(gsub(" ", "", DF$Manual.Tags[DF$Publication.Year == year]), ";"))
# Initialize a data frame for the current year
year_df <- data.frame(
Publication.Year = rep(year, length(small_set_tags$Tag)),
Tags = small_set_tags$Tag,
Count = 0
)
# Iterate over tags and update Count using regex
for (i in seq_along(year_df$Tags)) {
tag <- year_df$Tags[i]
regex_pattern <- paste0("\\b", tag, "\\b") # Use word boundaries to match whole tags
year_df$Count[i] <- sum(grepl(regex_pattern, DF$Manual.Tags[DF$Publication.Year == year]))
}
# Bind the dataframe to DDFF
DDFF <- rbind(DDFF, year_df)
}
# Reset row names
rownames(DDFF) <- NULL
# Plot the bar chart
gg_plot <- ggplot(DDFF, aes(x = Publication.Year, y = Count, fill = Tags)) +
geom_bar(stat = "identity", position = "stack") +
labs(title = "Distribution of 3 selected tags throught the years",
x = "Publication Year",
y = "Count") +
theme_minimal()
print(gg_plot)
# Save the ggplot to a PDF file
file_path <- file.path(output_folder, "small_set_tags_distributed_by_year.pdf")
ggsave(file_path, plot = gg_plot, width = 8, height = 6)
# Use write.csv to export the top tags to a CSV file
file_path <- file.path(output_folder, "samll_set_tags_distributed_by_year.csv")
write.csv(DDFF, file = file_path, row.names = FALSE)
# ANALYSIS : Number of authors per work
# Load dplyr library if not already loaded
if (!requireNamespace("dplyr", quietly = TRUE)) {
install.packages("dplyr")
}
library(dplyr)
# Function to count authors
count_authors <- function(authors) {
# Use strsplit to split authors by ';'
author_list <- unlist(strsplit(authors, ';'))
# Return the length of the list
return(length(author_list))
}
DF <- subset1_ZOTEROLIB
# Use mutate to create a new column 'AuthorCount'
DF <- DF %>%
mutate(AuthorCount = sapply(Author, count_authors))
# Group by 'Publication.Year' and 'AuthorCount' and count the number of items
bubble_data <- DF %>%
group_by(Publication.Year, AuthorCount) %>%
summarize(Number_of_Items = n())
# Create the bubble chart
gg_plot <- ggplot(bubble_data, aes(x = Publication.Year, y = AuthorCount, size = Number_of_Items)) +
geom_point(alpha = 0.7) +
scale_size_continuous(range = c(3, 15)) +
labs(title = "Bubble Chart - Number of Authors per work",
x = "Publication Year",
y = "Number of Authors per work",
size = "Number of articles")
print(gg_plot)
# Save the ggplot to a PDF file
file_path <- file.path(output_folder, "nb_author_per_work_per_year.pdf")
ggsave(file_path, plot = gg_plot, width = 8, height = 6)
# Use write.csv to export the top tags to a CSV file
file_path <- file.path(output_folder, "nb_author_per_work_per_year.csv")
write.csv(bubble_data, file = file_path, row.names = FALSE)
## RECONCILIATION with WIKIDATA
# We are going to use OpenRefine and Wikidata to match the names of the journals with their
# respectives QID and then retrieve the date of inception (creation date) of the journals
# if that data is indexed in Wikidata
# 1. Install and open the software OpenRefine.
# 2. Create a new project with the file output/all_journal_titles_counts.csv
# 3. Reconcile Publication.Title (details not described, a tutorial here https://www.wikidata.org/wiki/User:Pmartinolli/Tutoriel_chercheur)
# 4. Add a new column based on this reconciled data : Qid
# 5. Add a new column based on this reconciled data : Inception
# 6. Add a new column based on this reconciled data : CountryOfOrigin
# 7. Add a new column based on CountryOfOrigin : Qid_CoO
# 6. Export the results into a file journal_titles_reconciled.csv and put that file in the working folder (at the same root level as "My library.csv")
# Load the data
# Read the CSV file into a variable (e.g., data_frame) with specific options
file_path <- "journal_titles_reconciled.csv"
journal_titles_reconciled <- read.table(file_path, header = TRUE, sep = ",", encoding = "UTF-8")
# Turn the date in this format "2014-08-01T00:00:00Z" into "YYYY"
# install.packages("lubridate")
library(lubridate)
# Convert the 'Inception' column to a datetime object
journal_titles_reconciled$Inception <- ymd_hms(journal_titles_reconciled$Inception)
# Extract the year and create a new column 'Year'
journal_titles_reconciled$Year <- year(journal_titles_reconciled$Inception)
# Add a new field in the data frame corresponding to the year the Journal was created (Publication.Inception)
# and adding also a calculated field :
# PubAfterInception = Publication Year of the article minus Publication.Inception of the journal
# It is supposed to reflect if an article is published in a new journal or in an old traditional one
# Initialize a new column 'Publication.Inception' in ZOTEROLIB with NAs
ZOTEROLIB$Publication.Inception <- NA
# Loop through each row in ZOTEROLIB
for (i in 1:nrow(ZOTEROLIB)) {
# Get the Publication.Title for the current row in ZOTEROLIB
current_title <- ZOTEROLIB$Publication.Title[i]
# Check if there is a match in data$Publication.Title
match_row <- match(current_title, journal_titles_reconciled$Publication.Title)
# If there is a match, assign the corresponding Inception value
if (!is.na(match_row)) {
ZOTEROLIB$Publication.Inception[i] <- as.numeric(journal_titles_reconciled$Year[match_row])
}
}
# Create a new field 'PubAfterInception' in ZOTEROLIB
ZOTEROLIB$PubAfterInception <- NA
# Check if 'Publication.Inception' is not NA and calculate 'PubAfterInception'
ZOTEROLIB$PubAfterInception[!is.na(ZOTEROLIB$Publication.Inception)] <-
ZOTEROLIB$Publication.Year[!is.na(ZOTEROLIB$Publication.Inception)] -
ZOTEROLIB$Publication.Inception[!is.na(ZOTEROLIB$Publication.Inception)]
# Rebuilt a new subset1 (because we changed the ZOTEROLIB data frame)
# Creating a subset of the dataframe to match certain documents only
# Item.Type = "journalArticle"
# and Tags contains "_peer reviewed"
# and Tags contains "_TTRPG"
# Create a first subset based on your criteria
subset1_ZOTEROLIB <- subset(ZOTEROLIB,
Item.Type == "journalArticle" &
grepl("_peer reviewed", Manual.Tags) &
grepl("_TTRPG", Manual.Tags))
# Remove rows with NA values in PubAfterInception using complete.cases
subset1_ZOTEROLIB <- subset1_ZOTEROLIB[complete.cases(subset1_ZOTEROLIB$PubAfterInception), ]
# Create a ggplot bar plot for the distribution of PubAfterInception in the subset
ggplot(subset1_ZOTEROLIB, aes(x = factor(PubAfterInception))) +
geom_bar() +
labs(title = "Article's publication year following the establishment of the journal",
x = "Years after creation",
y = "Count") +
theme_minimal()
# Add a new field in the data frame corresponding to the Country of Origin of the Journal and the Qid of this CoO
# Initialize a new column 'CountryofOrigin' in ZOTEROLIB with NAs
ZOTEROLIB$CountryOfOrigin <- NA
ZOTEROLIB$Qid_CoO <- NA
# Loop through each row in ZOTEROLIB
for (i in 1:nrow(ZOTEROLIB)) {
# Get the Publication.Title for the current row in ZOTEROLIB
current_title <- ZOTEROLIB$Publication.Title[i]
# Check if there is a match in data$Publication.Title
match_row <- match(current_title, journal_titles_reconciled$Publication.Title)
# If there is a match, assign the corresponding values
if (!is.na(match_row)) {
ZOTEROLIB$CountryOfOrigin[i] <- journal_titles_reconciled$CountryOfOrigin[match_row]
ZOTEROLIB$Qid_CoO[i] <- journal_titles_reconciled$Qid_CoO[match_row]
}
}
# Rebuilt a new subset1 (because we changed the ZOTEROLIB data frame, again)
# Creating a subset of the dataframe to match certain documents only
# Item.Type = "journalArticle"
# and Tags contains "_peer reviewed"
# and Tags contains "_TTRPG"
# Create a first subset based on your criteria
subset1_ZOTEROLIB <- subset(ZOTEROLIB,
Item.Type == "journalArticle" &
grepl("_peer reviewed", Manual.Tags) &
grepl("_TTRPG", Manual.Tags))
# Remove rows with NA values in CountryOfOrigin using complete.cases
subset1_ZOTEROLIB <- subset1_ZOTEROLIB[complete.cases(subset1_ZOTEROLIB$CountryOfOrigin), ]
# Calculate the countries with counting the number of publications
CountryOfOrigin_count <- subset1_ZOTEROLIB %>%
group_by(CountryOfOrigin) %>%
summarise(Count = n())
# Remove NA
CountryOfOrigin_count <- subset(CountryOfOrigin_count, !is.na(CountryOfOrigin) & CountryOfOrigin != "")
# Create a bar plot
# Assuming merged_data is your data frame with columns 'Year' and 'Count'
gg_plot <- ggplot(CountryOfOrigin_count, aes(y = reorder(`CountryOfOrigin`, Count), x = Count)) +
geom_bar(stat = "identity", fill = "skyblue", width = 0.7) +
labs(title = "Journal's country of origin", y = "Country of origin", x = "Count") +
theme_minimal()
print(gg_plot)
# Save the ggplot to a PDF file
file_path <- file.path(output_folder, "journals_CountryOfOrigin.pdf")
ggsave(file_path, plot = gg_plot, width = 8, height = 6)
# Export the data as a CSV file with column names
file_path <- file.path(output_folder, "journals_CountryOfOrigin.csv")
write.csv(CountryOfOrigin_count, file = file_path, row.names = FALSE)
## Creating a word cloud
# based on the code by Céline Van den Rul at https://towardsdatascience.com/create-a-word-cloud-with-r-bde3e7422e8a
# Load wordcloud library if not already loaded
if (!requireNamespace("wordcloud", quietly = TRUE)) {
install.packages("wordcloud")
}
library(wordcloud)
# Load RColorBrewer library if not already loaded
if (!requireNamespace("RColorBrewer", quietly = TRUE)) {
install.packages("RColorBrewer")
}
library(RColorBrewer)
# Load wordcloud2 library if not already loaded
if (!requireNamespace("wordcloud2", quietly = TRUE)) {
install.packages("wordcloud2")
}
library(wordcloud2)
# Load tm library if not already loaded
if (!requireNamespace("tm", quietly = TRUE)) {
install.packages("tm")
}
library(tm)
#Create a vector containing only the text
text <- subset1_ZOTEROLIB$Title
# Create a corpus
docs <- Corpus(VectorSource(text))
# Clean the texts
library(dplyr)
docs <- docs %>%
tm_map(removeNumbers) %>%
tm_map(removePunctuation) %>%
tm_map(stripWhitespace)
docs <- tm_map(docs, content_transformer(tolower))
docs <- tm_map(docs, removeWords, stopwords("english"))
docs <- tm_map(docs, removeWords, stopwords("french"))
# Create a document-term-matrix
dtm <- TermDocumentMatrix(docs)
matrix <- as.matrix(dtm)
words <- sort(rowSums(matrix),decreasing=TRUE)
df <- data.frame(word = names(words),freq=words)
# Generate the word cloud, method 1
set.seed(1234)
wordcloud(words = df$word, freq = df$freq, min.freq = 1,
max.words=200, random.order=FALSE, rot.per=0.35,
colors=brewer.pal(8, "Dark2"))
# Generate the word cloud, method 2
wordcloud2(data=df, size=1.6, color='random-dark')
## Analysis : Thesis
# Load tidyr library if not already loaded
if (!requireNamespace("tidyr", quietly = TRUE)) {
install.packages("tidyr")
}
library(tidyr)
# Load dplyr library if not already loaded
if (!requireNamespace("dplyr", quietly = TRUE)) {
install.packages("dplyr")
}
library(dplyr)
subset2_ZOTEROLIB <- subset(ZOTEROLIB,
(Item.Type == "thesis" &
grepl("_TTRPG", Manual.Tags)))
DF <- subset2_ZOTEROLIB
# Remove all Type of thesis = Bachelor stuff (starts by B or R of D or H or I or C or S)
DF <- DF %>%
filter(!grepl("^[BRDHCS]", Type))
# Normalized Type field into TypeNormalized
# if Type starts by T P or D, then its a PhD
# if Type starts by M, then its a Master
DF <- DF %>%
mutate(TypeNormalized = case_when(
grepl("^[TPD]", Type) ~ "PhD",
grepl("^M", Type) ~ "Master",
TRUE ~ Type
))
# Now select only the PhD and the Master
DF <- DF %>%
filter(TypeNormalized %in% c("PhD", "Master"))
# Create a bar plot
# Assuming DF is your data frame with columns 'Year' and 'Count'
gg_plot <- ggplot(DF, aes(x = Publication.Year, fill = TypeNormalized)) +
geom_bar(position = position_stack(reverse = TRUE), stat = "count") +
labs(title = "Master and Doctoral Thesis Distributed by Year", x = "Year", y = "Count") +
theme_minimal()
# After runing the line under, a graphic is supposed to be displayed in the frame at the right of this one
print(gg_plot)
# Save the ggplot to a PDF file
file_path <- file.path(output_folder, "thesis_by_year.pdf")
ggsave(file_path, plot = gg_plot, width = 8, height = 6)
# Export the data as a CSV file with column names
# Create separate columns for Count PhD and Count Master
DF_counts <- DF %>%
group_by(Publication.Year, TypeNormalized) %>%
summarise(Count = n())
# Pivot the data to wide format
DF_counts_wide <- pivot_wider(DF_counts, names_from = TypeNormalized, values_from = Count) #library(tidyr)
file_path <- file.path(output_folder, "thesis_by_year.csv")
write.csv(DF_counts_wide, file = file_path, row.names = FALSE)
# Load tidyverse library if not already loaded
if (!requireNamespace("tidyverse", quietly = TRUE)) {
install.packages("tidyverse")
}
library(tidyverse)
# Filter rows where TypeNormalized is "PhD" and Num.Pages is not NA
filtered_df_phd <- DF %>% filter(TypeNormalized == "PhD" & !is.na(Num.Pages))
# Filter rows where TypeNormalized is "Master" and Num.Pages is not NA
filtered_df_master <- DF %>% filter(TypeNormalized == "Master" & !is.na(Num.Pages))
# Calculate the average of Num.Pages for PhD
average_num_pages_phd <- mean(filtered_df_phd$Num.Pages, na.rm = TRUE)
# Calculate the average of Num.Pages for Master
average_num_pages_master <- mean(filtered_df_master$Num.Pages, na.rm = TRUE)
# Create a scatter plot with averages displayed
gg_plot <- ggplot() +
geom_point(data = filtered_df_phd, aes(x = jitter(rep(2, nrow(filtered_df_phd)), amount = 0.1), y = Num.Pages), color = "red") +
geom_text(data = filtered_df_master, aes(x = 1, y = average_num_pages_master,
label = sprintf("Avg (Master): %.2f", average_num_pages_master)),
vjust = -0.5, hjust = -0.5, color = "darkgreen", size = 6) +
geom_point(data = filtered_df_master, aes(x = jitter(rep(1, nrow(filtered_df_master)), amount = 0.1), y = Num.Pages), color = "green") +
geom_text(data = filtered_df_phd, aes(x = 2, y = average_num_pages_phd,
label = sprintf("Avg (PhD): %.2f", average_num_pages_phd)),
vjust = -0.5, hjust = 1.3, color = "darkred", size = 6) +
labs(title = "Average Number of Pages for PhD and Master Thesis (excluding NA)",
x = " ",
y = "Number of Pages")
print(gg_plot)
# Save the ggplot to a PDF file
file_path <- file.path(output_folder, "avg_nb_pages_per_thesis.pdf")
ggsave(file_path, plot = gg_plot, width = 8, height = 6)
# Exporting the list of universities for another round of reconciliation with Wikidata data to retrieve Countries
# Replace 'DF$Publisher' with the column you want to export
column_to_export <- DF$Publisher
# Convert the column to a data frame with a custom name
df_to_export <- data.frame(Universities = column_to_export)
# Specify the file name
file_name <- paste0(output_folder, "/", "universities2reconcile.csv")
# Export the data frame to a CSV file
write.csv(df_to_export, file = file_name, row.names = FALSE)
# Open this csv with OpenRefine
# Duplicate the first column into a new column named UniversitiesWD
# Reconcile the UniversitiesWD column (to keep the first column identical and allow joining the data later)
# Add a new column based on the reconciled data : UniversitiesWD.QID
# Add a new column based on the reconciled data : Country
# Add a new column based on the reconciled data : Country.QID
# Export the file as comma-separated value "universities-reconciled.csv"
# "Universities", "UniversitiesWD", "UCountry", "UniversitiesWD.QID", "UCountry.QID"
# and put it at the root of the working folder
# Load the data
# Read the CSV file into a variable (e.g., data_frame) with specific options
file_path <- "universities-reconciled.csv"
universities_reconciled <- read.csv(file_path, header = FALSE, col.names = c("Universities", "UniversitiesWD", "UCountry", "UniversitiesWD.QID", "UCountry.QID"))
# merge the data
DF <- merge(DF, universities_reconciled, by.x = 'Publisher', by.y = 'Universities', all = FALSE)
DF <- distinct(DF, Key, .keep_all = TRUE)
count_data <- DF %>%
group_by(UCountry, TypeNormalized) %>%
summarize(count = n())
# Create the bar plot with reordered x-axis and categorized bars
gg_plot <- ggplot(count_data, aes(x = reorder(UCountry, count), y = count, fill = TypeNormalized)) +
geom_bar(stat = "identity", position = position_stack(reverse = TRUE)) +
labs(title = "Country Distribution", x = "Country", y = "Count") +
coord_flip() # Use coord_flip() to flip the x and y axes
print(gg_plot)
# Save the ggplot to a PDF file
file_path <- file.path(output_folder, "thesis_by_countries.pdf")
ggsave(file_path, plot = gg_plot, width = 8, height = 6)
file_path <- file.path(output_folder, "thesis_by_countries.csv")
write.csv(count_data, file = file_path, row.names = FALSE)
## Final Export of the enriched ZOTEROLIB data frame into a csv
file_name <- "My library.csv"
ZOTEROLIB <- read.table(file_name, header = TRUE, sep = ",", encoding = "UTF-8")
# Full join with journal_titles_reconciled
ZOTEROLIB <- full_join(ZOTEROLIB, journal_titles_reconciled, by = c('Publication.Title' = 'Publication.Title'), relationship = "many-to-many")
# Full join with universities_reconciled
ZOTEROLIB <- full_join(ZOTEROLIB, universities_reconciled, by = c('Publisher' = 'Universities'), relationship = "many-to-many")
# Remove duplicates based on the Key field
ZOTEROLIB <- distinct(ZOTEROLIB, Key, .keep_all = TRUE)
# Export the data as a CSV file with column names
file_path <- file.path(output_folder, "My_library_enriched.csv")
write.csv(ZOTEROLIB, file = file_path, row.names = FALSE)
# Create a small set of 4 tags
small_set_tags <- tags_counts_df %>%
filter(Tag %in% c("_therapy", "_mental disorder", "_well-being", "_anxiety"))
# Iterate over unique Publication.Year values
for (year in unique(DF$Publication.Year)) {
# Extract tags for the current year
year_tags <- unlist(strsplit(gsub(" ", "", DF$Manual.Tags[DF$Publication.Year == year]), ";"))
# Initialize a data frame for the current year
year_df <- data.frame(
Publication.Year = rep(year, length(small_set_tags$Tag)),
Tags = small_set_tags$Tag,
Count = 0
)
# Iterate over tags and update Count using regex
for (i in seq_along(year_df$Tags)) {
tag <- year_df$Tags[i]
regex_pattern <- paste0("\\b", tag, "\\b") # Use word boundaries to match whole tags
year_df$Count[i] <- sum(grepl(regex_pattern, DF$Manual.Tags[DF$Publication.Year == year]))
}
# Bind the dataframe to DDFF
DDFF <- rbind(DDFF, year_df)
}
# Reset row names
rownames(DDFF) <- NULL
# Plot the bar chart
gg_plot <- ggplot(DDFF, aes(x = Publication.Year, y = Count, fill = Tags)) +
geom_bar(stat = "identity", position = "stack") +
labs(title = "Distribution of 4 selected tags throught the years",
x = "Publication Year",
y = "Count") +
theme_minimal()
print(gg_plot)
# Save the ggplot to a PDF file
file_path <- file.path(output_folder, "small_set_tags_distributed_by_year.pdf")
ggsave(file_path, plot = gg_plot, width = 8, height = 6)
# Use write.csv to export the top tags to a CSV file
file_path <- file.path(output_folder, "samll_set_tags_distributed_by_year.csv")
write.csv(DDFF, file = file_path, row.names = FALSE)
# Use write.csv to export the top tags to a CSV file
file_path <- file.path(output_folder, "small_set_tags_distributed_by_year.csv")
write.csv(DDFF, file = file_path, row.names = FALSE)
small_set_tags <- tags_counts_df %>%
filter(Tag %in% c("_moral panic"))
# Iterate over unique Publication.Year values
for (year in unique(DF$Publication.Year)) {
# Extract tags for the current year
year_tags <- unlist(strsplit(gsub(" ", "", DF$Manual.Tags[DF$Publication.Year == year]), ";"))
# Initialize a data frame for the current year
year_df <- data.frame(
Publication.Year = rep(year, length(small_set_tags$Tag)),
Tags = small_set_tags$Tag,
Count = 0
)
# Iterate over tags and update Count using regex
for (i in seq_along(year_df$Tags)) {
tag <- year_df$Tags[i]
regex_pattern <- paste0("\\b", tag, "\\b") # Use word boundaries to match whole tags
year_df$Count[i] <- sum(grepl(regex_pattern, DF$Manual.Tags[DF$Publication.Year == year]))
}
# Bind the dataframe to DDFF
DDFF <- rbind(DDFF, year_df)
}
# Reset row names
rownames(DDFF) <- NULL
# Plot the bar chart
gg_plot <- ggplot(DDFF, aes(x = Publication.Year, y = Count, fill = Tags)) +
geom_bar(stat = "identity", position = "stack") +
labs(title = "Distribution of 4 selected tags throught the years",
x = "Publication Year",
y = "Count") +
theme_minimal()
print(gg_plot)
# Save the ggplot to a PDF file
file_path <- file.path(output_folder, "small_set_tags_distributed_by_year.pdf")
ggsave(file_path, plot = gg_plot, width = 8, height = 6)
# Assuming your data frame is named DF with a column Tags
DF <- subset1_ZOTEROLIB
# Create an empty dataframe DDFF
DDFF <- data.frame()
small_set_tags <- tags_counts_df %>%
filter(Tag %in% c("_moral panic"))
# Iterate over unique Publication.Year values
for (year in unique(DF$Publication.Year)) {
# Extract tags for the current year
year_tags <- unlist(strsplit(gsub(" ", "", DF$Manual.Tags[DF$Publication.Year == year]), ";"))
# Initialize a data frame for the current year
year_df <- data.frame(
Publication.Year = rep(year, length(small_set_tags$Tag)),
Tags = small_set_tags$Tag,
Count = 0
)
# Iterate over tags and update Count using regex
for (i in seq_along(year_df$Tags)) {
tag <- year_df$Tags[i]
regex_pattern <- paste0("\\b", tag, "\\b") # Use word boundaries to match whole tags
year_df$Count[i] <- sum(grepl(regex_pattern, DF$Manual.Tags[DF$Publication.Year == year]))
}
# Bind the dataframe to DDFF
DDFF <- rbind(DDFF, year_df)
}
# Reset row names
rownames(DDFF) <- NULL
# Plot the bar chart
gg_plot <- ggplot(DDFF, aes(x = Publication.Year, y = Count, fill = Tags)) +
geom_bar(stat = "identity", position = "stack") +
labs(title = "Distribution of 4 selected tags throught the years",
x = "Publication Year",
y = "Count") +
theme_minimal()
print(gg_plot)
# Save the ggplot to a PDF file
file_path <- file.path(output_folder, "small_set_tags_distributed_by_year.pdf")
ggsave(file_path, plot = gg_plot, width = 8, height = 6)
library(readr)
game_citation_data <- read_csv("C:/00-Yragatext/_working_directory/game_citation_data.csv")
View(game_citation_data)