-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathg1_test.go
210 lines (173 loc) · 4.95 KB
/
g1_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
package bls_test
import (
"testing"
"github.com/phoreproject/bls"
)
func TestG1Generator(t *testing.T) {
x := bls.FQZero.Copy()
i := 0
for {
// y^2 = x^3 + b
rhs := x.Copy()
rhs.SquareAssign()
rhs.MulAssign(x)
rhs.AddAssign(bls.BCoeff)
y, success := rhs.Sqrt()
if success {
negY := y.Copy()
negY.NegAssign()
pY := negY
if y.Cmp(negY) < 0 {
pY = y
}
p := bls.NewG1Affine(x, pY)
if p.IsInCorrectSubgroupAssumingOnCurve() {
t.Fatal("new point should be in subgroup")
}
g1 := p.ScaleByCofactor()
if !g1.IsZero() {
if i != 4 {
t.Fatal("non-zero point should be 4th point")
}
g1 := g1.ToAffine()
if !g1.IsInCorrectSubgroupAssumingOnCurve() {
t.Fatal("point is not in correct subgroup")
}
if !g1.Equals(bls.G1AffineOne) {
t.Fatal("point is not equal to generator point")
}
break
}
}
i++
x.AddAssign(bls.FQOne)
}
}
func TestG1DoublingCorrectness(t *testing.T) {
p := bls.NewG1Projective(
bls.FQReprToFQ(bls.FQRepr{0x47fd1f891d6e8bbf, 0x79a3b0448f31a2aa, 0x81f3339e5f9968f, 0x485e77d50a5df10d, 0x4c6fcac4b55fd479, 0x86ed4d9906fb064}),
bls.FQReprToFQ(bls.FQRepr{0xd25ee6461538c65, 0x9f3bbb2ecd3719b9, 0xa06fd3f1e540910d, 0xcefca68333c35288, 0x570c8005f8573fa6, 0x152ca696fe034442}),
bls.FQOne,
)
newP := p.Double()
expectedP := bls.NewG1Affine(
bls.FQReprToFQ(bls.FQRepr{0xf939ddfe0ead7018, 0x3b03942e732aecb, 0xce0e9c38fdb11851, 0x4b914c16687dcde0, 0x66c8baf177d20533, 0xaf960cff3d83833}),
bls.FQReprToFQ(bls.FQRepr{0x3f0675695f5177a8, 0x2b6d82ae178a1ba0, 0x9096380dd8e51b11, 0x1771a65b60572f4e, 0x8b547c1313b27555, 0x135075589a687b1e}),
)
if !newP.ToAffine().Equals(expectedP) {
t.Fatal("doubling is incorrect")
}
}
func TestG1AdditionCorrectness(t *testing.T) {
p1 := bls.NewG1Projective(
bls.FQReprToFQ(bls.FQRepr{0x47fd1f891d6e8bbf, 0x79a3b0448f31a2aa, 0x81f3339e5f9968f, 0x485e77d50a5df10d, 0x4c6fcac4b55fd479, 0x86ed4d9906fb064}),
bls.FQReprToFQ(bls.FQRepr{0xd25ee6461538c65, 0x9f3bbb2ecd3719b9, 0xa06fd3f1e540910d, 0xcefca68333c35288, 0x570c8005f8573fa6, 0x152ca696fe034442}),
bls.FQOne,
)
p2 := bls.NewG1Projective(
bls.FQReprToFQ(bls.FQRepr{0xeec78f3096213cbf, 0xa12beb1fea1056e6, 0xc286c0211c40dd54, 0x5f44314ec5e3fb03, 0x24e8538737c6e675, 0x8abd623a594fba8}),
bls.FQReprToFQ(bls.FQRepr{0x6b0528f088bb7044, 0x2fdeb5c82917ff9e, 0x9a5181f2fac226ad, 0xd65104c6f95a872a, 0x1f2998a5a9c61253, 0xe74846154a9e44}),
bls.FQOne,
)
newP := p1.Add(p2).ToAffine()
expectedP := bls.NewG1Affine(
bls.FQReprToFQ(bls.FQRepr{0x6dd3098f22235df, 0xe865d221c8090260, 0xeb96bb99fa50779f, 0xc4f9a52a428e23bb, 0xd178b28dd4f407ef, 0x17fb8905e9183c69}),
bls.FQReprToFQ(bls.FQRepr{0xd0de9d65292b7710, 0xf6a05f2bcf1d9ca7, 0x1040e27012f20b64, 0xeec8d1a5b7466c58, 0x4bc362649dce6376, 0x430cbdc5455b00a}),
)
if !newP.Equals(expectedP) {
t.Fatal("addition is incorrect")
}
}
type XORShift struct {
state uint64
}
func NewXORShift(state uint64) *XORShift {
return &XORShift{state}
}
func (xor *XORShift) Read(b []byte) (int, error) {
for i := range b {
x := xor.state
x ^= x << 13
x ^= x >> 7
x ^= x << 17
b[i] = uint8(x)
xor.state = x
}
return len(b), nil
}
const g1MulAssignSamples = 200
func BenchmarkG1MulAssign(b *testing.B) {
type mulData struct {
g *bls.G1Projective
f *bls.FR
}
r := NewXORShift(1)
inData := [g1MulAssignSamples]mulData{}
for i := 0; i < g1MulAssignSamples; i++ {
gx, _ := bls.RandFQ(r)
gy, _ := bls.RandFQ(r)
gz, _ := bls.RandFQ(r)
randFR, _ := bls.RandFR(r)
inData[i] = mulData{
g: bls.NewG1Projective(gx, gy, gz),
f: randFR,
}
}
b.ResetTimer()
count := 0
for i := 0; i < b.N; i++ {
inData[count].g.Mul(inData[count].f.ToRepr().ToFQ())
count = (count + 1) % g1MulAssignSamples
}
}
func BenchmarkG1AddAssign(b *testing.B) {
type addData struct {
g1 *bls.G1Projective
g2 *bls.G1Projective
}
r := NewXORShift(1)
inData := [g1MulAssignSamples]addData{}
for i := 0; i < g1MulAssignSamples; i++ {
g1x, _ := bls.RandFQ(r)
g1y, _ := bls.RandFQ(r)
g1z, _ := bls.RandFQ(r)
g2x, _ := bls.RandFQ(r)
g2y, _ := bls.RandFQ(r)
g2z, _ := bls.RandFQ(r)
inData[i] = addData{
g1: bls.NewG1Projective(g1x, g1y, g1z),
g2: bls.NewG1Projective(g2x, g2y, g2z),
}
}
b.ResetTimer()
count := 0
for i := 0; i < b.N; i++ {
inData[count].g1.Add(inData[count].g2)
count = (count + 1) % g1MulAssignSamples
}
}
func BenchmarkG1AddAssignMixed(b *testing.B) {
type addData struct {
g1 *bls.G1Projective
g2 *bls.G1Affine
}
r := NewXORShift(1)
inData := [g1MulAssignSamples]addData{}
for i := 0; i < g1MulAssignSamples; i++ {
g1x, _ := bls.RandFQ(r)
g1y, _ := bls.RandFQ(r)
g1z, _ := bls.RandFQ(r)
g2x, _ := bls.RandFQ(r)
g2y, _ := bls.RandFQ(r)
inData[i] = addData{
g1: bls.NewG1Projective(g1x, g1y, g1z),
g2: bls.NewG1Affine(g2x, g2y),
}
}
b.ResetTimer()
count := 0
for i := 0; i < b.N; i++ {
inData[count].g1.AddAffine(inData[count].g2)
count = (count + 1) % g1MulAssignSamples
}
}