-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearching.py
43 lines (34 loc) · 1.6 KB
/
searching.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import model_inference
import webpage
import numpy as np
from embedding import Embedder
from phrase_extraction_evaluation import STSEvaluation
from typing import List, Union
class PageSearch:
def __init__(self, pages: List[webpage.Webpage]):
self.pages = pages
def get_relevance(emb_key: List[np.ndarray], emb_query: List[np.ndarray]) -> float:
''' Finds how relevant a page is to some keywords
emb_key - Embeddings of key phrases of the page
emb_query - Embeddings of search phrases
'''
result = 0
return STSEvaluation.average_cosine_score(STSEvaluation.make_similarity_matrix(emb_key,emb_query))
def search_embedded_pages(self, search_phrases: List[np.ndarray]) -> List[Union[webpage.Webpage, float]]:
page_list=[]
for page in self.pages:
# print(page.link, np.shape(page.embeddings))
try: # Error in checking page, probably failed embed due to foreign language
page_data = {
'page': page,
'relevance': PageSearch.get_relevance(page.embeddings, search_phrases)
}
page_list.append(page_data)
except:
continue
sorted_list = sorted(page_list, key=lambda x: x['relevance'])
return sorted_list
def search_pages(self, search_text: str, model: model_inference.ModelInferencing):
search_phrases = model.get_search_phrases(search_text)
emb_search = Embedder.get_embedding(search_phrases)
return PageSearch.search_embedded_pages(self, emb_search)