-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdraft.bbl
144 lines (119 loc) · 5.49 KB
/
draft.bbl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
\begin{thebibliography}{10}
\bibitem{Bekkerman2012}
Ron Bekkerman, Mikhail Bilenko, and John Langford.
\newblock {\em Scaling Up Machine Learning}.
\newblock Cambridge University Press, 2012.
\bibitem{borthakur2008hdfs}
Dhruba Borthakur.
\newblock Hdfs architecture guide.
\newblock {\em Hadoop Apache Project. http://hadoop. apache.
org/common/docs/current/hdfs\_design. pdf}, 2008.
\bibitem{chang2011foundations}
Edward~Y Chang.
\newblock {\em Foundations of Large-Scale Multimedia Information Management and
Retrieval}.
\newblock Springerverlag Berlin Heidelberg and Tsinghua University Press, 2011.
\bibitem{chang2011psvm}
Edward~Y Chang, Kaihua Zhu, Hao Wang, Hongjie Bai, Jian Li, Zhihuan Qiu, and
Hang Cui.
\newblock Psvm: Parallelizing support vector machines on distributed computers.
\newblock {\em Advances in Neural Information Processing Systems}, 20:213--230,
2007.
\bibitem{Chen5444877}
Wen-Yen Chen, Yangqiu Song, Hongjie Bai, Chih-Jen Lin, and E.Y. Chang.
\newblock Parallel spectral clustering in distributed systems.
\newblock {\em Pattern Analysis and Machine Intelligence, IEEE Transactions
on}, 33(3):568--586, 2011.
\bibitem{clarkson2010sublinear}
K.L. Clarkson, E.~Hazan, and D.P. Woodruff.
\newblock Sublinear optimization for machine learning.
\newblock In {\em Proceedings of the 2010 IEEE 51st Annual Symposium on
Foundations of Computer Science}, pages 449--457. IEEE Computer Society,
2010.
\bibitem{cotter2012kernelized}
A.~Cotter, S.~Shalev-Shwartz, and N.~Srebro.
\newblock The kernelized stochastic batch perceptron.
\newblock {\em Arxiv preprint arXiv:1204.0566}, 2012.
\bibitem{dean2008mapreduce}
Jeffrey Dean and Sanjay Ghemawat.
\newblock Mapreduce: simplified data processing on large clusters.
\newblock {\em Communications of the ACM}, 51(1):107--113, 2008.
\bibitem{DelanyKBS05}
S.~J. Delany, P.~Cunningham, A.~Tsymbal, and L.~Coyle.
\newblock A case-based technique for tracking concept drift in spam filtering.
\newblock {\em Knowledge-Based Systems}, 18(4--5):187--195, 2005.
\bibitem{fan2008liblinear}
Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
\newblock Liblinear: A library for large linear classification.
\newblock {\em The Journal of Machine Learning Research}, 9:1871--1874, 2008.
\bibitem{garberapproximating}
D.~Garber and E.~Hazan.
\newblock Approximating semidefinite programs in sublinear time.
\newblock In {\em Advances in Neural Information Processing Systems}, 2011.
\bibitem{guyon2004result}
I.~Guyon, S.~Gunn, A.~Ben-Hur, and G.~Dror.
\newblock Result analysis of the nips 2003 feature selection challenge.
\newblock {\em Advances in Neural Information Processing Systems}, 17:545--552,
2004.
\bibitem{HastieBook:SL}
T.~Hastie, R.~Tishirani, and J.~Friedman.
\newblock {\em The Elements of Statistical Learning: Data Mining, Inference,
and Prediction}.
\newblock Springer-Verlag, New York, 2001.
\bibitem{hazan2011optimal}
E.~Hazan and T.~Koren.
\newblock Optimal algorithms for ridge and lasso regression with partially
observed attributes.
\newblock {\em Arxiv preprint arXiv:1108.4559}, 2011.
\bibitem{hazanbeating}
E.~Hazan, T.~Koren, and N.~Srebro.
\newblock Beating sgd: Learning svms in sublinear time.
\newblock In {\em Advances in Neural Information Processing Systems}, 2011.
\bibitem{Li:2008:PPF:1454008.1454027}
Haoyuan Li, Yi~Wang, Dong Zhang, Ming Zhang, and Edward~Y. Chang.
\newblock Pfp: parallel fp-growth for query recommendation.
\newblock In {\em Proceedings of the 2008 ACM conference on Recommender
systems}, RecSys '08, pages 107--114. ACM, 2008.
\bibitem{Liu:2011:PPL:1961189.1961198}
Zhiyuan Liu, Yuzhou Zhang, Edward~Y. Chang, and Maosong Sun.
\newblock Plda+: Parallel latent dirichlet allocation with data placement and
pipeline processing.
\newblock {\em ACM Trans. Intell. Syst. Technol.}, 2(3):26:1--26:18, May 2011.
\bibitem{ma2009identifying}
Justin Ma, Lawrence~K Saul, Stefan Savage, and Geoffrey~M Voelker.
\newblock Identifying suspicious urls: an application of large-scale online
learning.
\newblock In {\em Proceedings of the 26th Annual International Conference on
Machine Learning}, pages 681--688. ACM, 2009.
\bibitem{mahoutscalable}
Apache Mahout.
\newblock Scalable machine-learning and data-mining library.
\newblock {\em available at mahout. apache. org}.
\bibitem{peng2012sublinear}
Haoruo Peng, Zhengyu Wang, Edward~Y Chang, Shuchang Zhou, and Zhihua Zhang.
\newblock Sublinear algorithms for penalized logistic regression in massive
datasets.
\newblock In {\em Machine Learning and Knowledge Discovery in Databases}, pages
553--568. Springer, 2012.
\bibitem{sarwar2001item}
Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl.
\newblock Item-based collaborative filtering recommendation algorithms.
\newblock In {\em Proceedings of the 10th international conference on World
Wide Web}, pages 285--295. ACM, 2001.
\bibitem{white2012hadoop}
Tom White.
\newblock {\em Hadoop: The definitive guide}.
\newblock O'Reilly Media, Inc., 2012.
\bibitem{zaharia2010spark}
Matei Zaharia, Mosharaf Chowdhury, Michael~J Franklin, Scott Shenker, and Ion
Stoica.
\newblock Spark: cluster computing with working sets.
\newblock In {\em Proceedings of the 2nd USENIX conference on Hot topics in
cloud computing}, pages 10--10, 2010.
\bibitem{zhang2004solving}
T.~Zhang.
\newblock Solving large scale linear prediction problems using stochastic
gradient descent algorithms.
\newblock In {\em Proceedings of the twenty-first international conference on
Machine learning}, page 116. ACM, 2004.
\end{thebibliography}