forked from rmit-ir/pan2020-rmit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
143 lines (129 loc) · 4.46 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold
from sklearn.pipeline import Pipeline
from data_generator import data_generator
from sklearn.metrics import confusion_matrix
from sklearn import metrics
import numpy as np
import matplotlib.pyplot as pl
import pandas as pd
import pickle
from sklearn.svm import LinearSVC
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_classification
clf = make_pipeline(StandardScaler(),
LinearSVC(random_state=0, tol=1e-5,max_iter=4000)
)
#classifier = RandomForestClassifier(n_estimators=100)
# clf =LogisticRegression()
def get_train_and_test(j):
sets = []
for i in range(0,10):
data =data_generator(('csvs/3rd/user%s.csv' %i))
data_set = data.get_set()
sets.append(data_set)
test = sets.pop(j)
train = pd.concat(sets)
return train,test
def get_all():
sets = []
for i in range(0,10):
data =data_generator(('csvs/3rd/user%s.csv' %i))
data_set = data.get_set()
sets.append(data_set)
train = pd.concat(sets)
return train
def assemble(columns,s):
c = s
media = c+'_median'
std = c+'_std'
columns.append(c)
columns.append(media)
columns.append(std)
return columns
def classification():
columns = ['median_score','mean_score','score_std','median_compound','mean_compound','compound_std','emoji','hash',
'hash_median','hash_std','url','url_median','url_std']
columns =assemble(columns,'trump')
print(columns)
accuracy = 0
precision =0
recall = 0
predict_set = []
test_set = []
for i in range(0,10):
train_data,test_data = get_train_and_test(i)
x_train = pd.DataFrame(train_data, columns=columns).values
y_train = train_data['label']
x_test = pd.DataFrame(test_data, columns=columns).values
y_test = test_data['label']
clf.fit(x_train,y_train)
predicted = clf.predict(x_test)
predict_set.extend(predicted)
test_set.extend(y_test)
accuracy+=metrics.accuracy_score(y_test,predicted)
precision+=metrics.precision_score(y_test,predicted)
recall+=metrics.recall_score(y_test,predicted)
print(accuracy*10,precision*10,recall*10)
print(predict_set)
print(test_set)
matrix = confusion_matrix(test_set, predict_set)
print(matrix)
return matrix
def make_model():
sets = []
columns = ['median_score','mean_score','score_std','median_compound','mean_compound','compound_std','emoji','hash',
'hash_median','hash_std','url','url_median','url_std']
columns =assemble(columns,'trump')
print(columns)
accuracy = 0
precision =0
recall = 0
predict_set = []
test_set = []
train_data = get_all()
x_train = pd.DataFrame(train_data, columns=columns).values
y_train = train_data['label']
clf.fit(x_train,y_train)
pickle.dump(clf,open('classifier.txt', 'wb'))
def classify(name):
df_tweet = data_generator(name).get_set()
x = df_tweet['score'].tolist()
X = np.array(x).reshape(-1,1)
ylabels =df_tweet['Label']
print(X)
kf = KFold(n_splits=10, random_state=None, shuffle=False)
accuracy = 0
precision =0
recall = 0
predict_set = []
test_set = []
for train_index, test_index in kf.split(X):
X_train,X_test = X[train_index],X[test_index]
y_train,y_test= ylabels[train_index],ylabels[test_index]
classifier.fit(X_train,y_train)
predicted = classifier.predict(X_test)
predict_set.extend(predicted)
test_set.extend(y_test)
accuracy+=metrics.accuracy_score(y_test,predicted)
precision+=metrics.precision_score(y_test,predicted)
recall+=metrics.recall_score(y_test,predicted)
print(accuracy,precision,recall)
print(predict_set)
print(test_set)
matrix = confusion_matrix(test_set, predict_set)
return matrix
if __name__ == "__main__":
#make_model()
# matrixs = classify("datas/mean.csv")
# print(matrixs)
# pl.matshow(matrixs)
# pl.title('Confusion matrix of the classifier')
# pl.colorbar()
# pl.xlabel('Predicted')
# pl.ylabel('True')
# pl.savefig('confusion.jpg')
classification()