-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
92 lines (65 loc) · 1.68 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import os
import time
import numpy as np
import torch
from tokens import PAD
from setup import init_model, save_checkpoint
save_interval = 1000
wandb_log = True
wandb_project = "ttt"
batch_size = 2048
learning_rate = 6e-4
max_iters = 600000
weight_decay = 1e-1
beta1 = 0.9
beta2 = 0.95
grad_clip = 1.0
device = "cuda"
data_dir = "data"
train_data = np.load(os.path.join(data_dir, "train.npy")).astype(dtype=np.int64)
def get_batch():
data = train_data
ix = torch.randint(data.shape[0], (batch_size,))
x = torch.from_numpy(data[ix, :])
y = torch.roll(x, shifts=-1, dims=1)
y[:, -1] = PAD
x, y = x.pin_memory().to(device, non_blocking=True), y.pin_memory().to(
device, non_blocking=True
)
return x, y
iter_num = 0
model = init_model()
model.to(device)
model.train()
optimizer = model.configure_optimizers(
weight_decay, learning_rate, (beta1, beta2), device
)
if wandb_log:
import wandb
wandb.init(project=wandb_project)
X, Y = get_batch()
t0 = time.time()
while iter_num < max_iters:
if iter_num > 0 and iter_num % save_interval == 0:
save_checkpoint(model)
logits, loss = model(X, Y)
loss.backward()
X, Y = get_batch()
if grad_clip != 0.0:
torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
optimizer.step()
optimizer.zero_grad(set_to_none=True)
t1 = time.time()
dt = t1 - t0
t0 = t1
lossf = loss.item()
print(f"iter {iter_num}: loss {lossf:.4f}, time {dt*1000:.2f}ms")
if wandb_log:
wandb.log(
{
"iter": iter_num,
"train/loss": lossf,
"lr": learning_rate,
}
)
iter_num += 1