We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
x = data[['variance', 'skewness']].values y = data['class'].values from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(x, y)
X_train.shape, X_test.shape, y_train.shape, y_test.shape x = (x - np.mean(x, axis=0)) / np.std(x, axis=0) plt.scatter(x[:, 0], x[:, 1], c=y) plt.show()
def perceptron(x, y, lr=0.1, n_iters=100): w = np.zeros(x.shape[1]) b = 0
for _ in range(n_iters): for i in range(x.shape[0]): if y[i] * (np.dot(x[i], w) + b) <= 0: w += lr * y[i] * x[i] b += lr * y[i] return w, b
perceptron_w, perceptron_b = perceptron(x, y)
plt.scatter(x[:, 0], x[:, 1], c=y) xlim = plt.gca().get_xlim() ylim = plt.gca().get_ylim() x_boundary = np.linspace(xlim[0], xlim[1]) y_boundary = -(perceptron_w[0] / perceptron_w[1]) * x_boundary - (perceptron_b / perceptron_w[1]) plt.plot(x_boundary, y_boundary, color='black') plt.xlim(xlim) plt.ylim(ylim) plt.show()
def adaline(x, y, lr=0.1, n_iters=100): w = np.zeros(x.shape[1]) b = 0
for i in range(n_iters): output = np.dot(x, w) + b errors = y - output w += lr * np.dot(x.T, errors) b += lr * errors.sum() return w, b
adaline_w, adaline_b = adaline(x, y)
plt.scatter(x[:, 0], x[:, 1], c=y) xlim = plt.gca().get_xlim() ylim = plt.gca().get_ylim() x_boundary = np.linspace(xlim[0], xlim[1]) y_boundary = -(adaline_w[0] / adaline_w[1]) * x_boundary - (adaline_b / adaline_w[1]) plt.plot(x_boundary, y_boundary, color='black') plt.xlim(xlim) plt.ylim(ylim) plt.show()
The text was updated successfully, but these errors were encountered:
No branches or pull requests
x = data[['variance', 'skewness']].values
y = data['class'].values
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x, y)
X_train.shape, X_test.shape, y_train.shape, y_test.shape
x = (x - np.mean(x, axis=0)) / np.std(x, axis=0)
plt.scatter(x[:, 0], x[:, 1], c=y)
plt.show()
Perceptron algorithm
def perceptron(x, y, lr=0.1, n_iters=100):
w = np.zeros(x.shape[1])
b = 0
perceptron_w, perceptron_b = perceptron(x, y)
Plot decision boundary for Perceptron
plt.scatter(x[:, 0], x[:, 1], c=y)
xlim = plt.gca().get_xlim()
ylim = plt.gca().get_ylim()
x_boundary = np.linspace(xlim[0], xlim[1])
y_boundary = -(perceptron_w[0] / perceptron_w[1]) * x_boundary - (perceptron_b / perceptron_w[1])
plt.plot(x_boundary, y_boundary, color='black')
plt.xlim(xlim)
plt.ylim(ylim)
plt.show()
Adaline algorithm
def adaline(x, y, lr=0.1, n_iters=100):
w = np.zeros(x.shape[1])
b = 0
adaline_w, adaline_b = adaline(x, y)
Plot decision boundary for Adaline
plt.scatter(x[:, 0], x[:, 1], c=y)
xlim = plt.gca().get_xlim()
ylim = plt.gca().get_ylim()
x_boundary = np.linspace(xlim[0], xlim[1])
y_boundary = -(adaline_w[0] / adaline_w[1]) * x_boundary - (adaline_b / adaline_w[1])
plt.plot(x_boundary, y_boundary, color='black')
plt.xlim(xlim)
plt.ylim(ylim)
plt.show()
The text was updated successfully, but these errors were encountered: