-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathK2.m
89 lines (77 loc) · 3.02 KB
/
K2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
classdef K2 < handle
properties
M
rhs
sol
Afree
end
methods (Abstract)
Solver(o)
end
methods
function o = K2(options)
o.diagHess = false;
end
function y = opK2(x, ~)
dx = x(1:o.n);
dy = x(o.n+1:o.n+o.m);
u = -o.H * dx + o.A' * dy;
v = o.A * dx + o.d2.^2 .* dy;
y = [u; v];
end
function Solve_Newton(o)
%-----------------------------------------------------------------
% Solve (*) for [dx ; dy].
%-----------------------------------------------------------------
% Define a damped Newton iteration for solving f = 0,
% keeping x1, x2, z1, z2 > 0. We eliminate dx1, dx2, dz1, dz2
% to obtain the system
%
% [-H2 A' ] [dx] = [w ] (*), H2 = H + D1^2 + X1inv Z1 + X2inv Z2,
% [ A D2^2] [dy] = [r1] w = r2 - X1inv(cL + Z1 rL)
% + X2inv(cU + Z2 rU),
%
%----------------------------------------------------------------
o.H = o.H + sparse(o.low,o.low, o.z1(o.low)./o.x1(o.low), o.n, o.n);
o.H = o.H + sparse(o.upp,o.upp, o.z2(o.upp)./o.x2(o.upp), o.n,o.n);
w = o.r2;
w(o.low) = w(o.low) - (o.cL(o.low) + o.z1(o.low).*o.rL(o.low))./o.x1(o.low);
w(o.upp) = w(o.upp) + (o.cU(o.upp) + o.z2(o.upp).*o.rU(o.upp))./o.x2(o.upp);
if o.nfix > 0 && o.explicitA
[ih, jh, vh] = find(o.H);
for k = o.fix'
vh(ih == k & ih ~= jh) = 0;
vh(jh == k & ih ~= jh) = 0;
end
o.H = sparse(ih, jh, vh);
end
if ~o.explicitA
o.M = opFunction(o.m + o.n, o.m + o.n, @opK2);
else
if o.nfix == 0
o.M = [ -o.H o.A'
o.A sparse(1:o.m, 1:o.m, o.d2.^2, o.m,o.m)];
else
if o.PDitns == 1
o.Afree = o.A;
o.Afree(:, o.fix) = 0;
end
o.M = [ -o.H o.Afree'
o.Afree sparse(1:o.m, 1:o.m, o.d2.^2, o.m,o.m)];
end
end
if o.need_precon
o.precon = speye(size(o.M));
end
o.rhs = [w; o.r1];
o.rhs(o.fix) = 0;
Solver(o);
o.dx = o.sol(1:o.n);
o.dy = o.sol(o.n+1:o.n+o.m);
o.dx1(o.low) = -o.rL(o.low) + o.dx(o.low);
o.dx2(o.upp) = -o.rU(o.upp) - o.dx(o.upp);
o.dz1(o.low) = (o.cL(o.low) - o.z1(o.low).*o.dx1(o.low)) ./ o.x1(o.low);
o.dz2(o.upp) = (o.cU(o.upp) - o.z2(o.upp).*o.dx2(o.upp)) ./ o.x2(o.upp);
end
end
end