-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathK1x.m
80 lines (68 loc) · 2.65 KB
/
K1x.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
classdef K1x < handle
properties
M
rhs
sol
norm_A
end
methods (Abstract)
Solver(o)
end
methods
function o = K1x(options)
o.diagHess = true;
end
function y = opK1y(x, ~)
t = o.A * x;
t = t ./ (o.d2.^2);
t = o.A' * t;
y = t + o.H * x;
end
function Solve_Newton(o)
%-----------------------------------------------------------------
% Solve (*) for dx.
%-----------------------------------------------------------------
% Define a damped Newton iteration for solving f = 0,
% keeping x1, x2, z1, z2 > 0. We eliminate dx1, dx2, dz1, dz2
% to obtain the system
%
% [-H2 A' ] [dx] = [w ], H2 = H + D1^2 + X1inv Z1 + X2inv Z2,
% [ A D2^2] [dy] = [r1] w = r2 - X1inv(cL + Z1 rL)
% + X2inv(cU + Z2 rU),
%
% Then we eliminate dy to obtain :
%
% (A'*D2^-2*A + H2) dx = A'*D2^-2*r1 - w (*)
%-----------------------------------------------------------------
% For this method to work, H must be diagonal
o.H(o.low) = o.H(o.low) + o.z1(o.low) ./ o.x1(o.low);
o.H(o.upp) = o.H(o.upp) + o.z2(o.upp) ./ o.x2(o.upp);
o.H(o.fix) = Inf;
w = o.r2;
w(o.low) = w(o.low) - (o.cL(o.low) + o.z1(o.low) .* o.rL(o.low)) ./ o.x1(o.low);
w(o.upp) = w(o.upp) + (o.cU(o.upp) + o.z2(o.upp) .* o.rU(o.upp)) ./ o.x2(o.upp);
if o.PDitns == 1
o.norm_A = normest(o.A, 1.0e-2);
end
if o.need_precon
o.precon = 1 ./ (o.norm_A^2 / o.d2^2 + 1./o.H);
o.precon = diag(sparse(o.precon));
end
if o.explicitA
o.M = o.A' * sparse(1:o.m, 1:o.m, 1 ./ (o.d2.^2), o.m, o.m) * o.A;
o.M = o.M + sparse(1:o.n, 1:o.n, o.H, o.n, o.n);
else
o.M = opFunction(o.m, o.m, @opK1y);
end
o.rhs = o.A' * (o.r1 ./ (o.d2.^2)) - w;
Solver(o);
o.dx = o.sol;
% dx is now known. Get dy, dx1, dx2, dz1, dz2.
o.dy = (o.r1 - o.A * o.dx) ./ (o.d2.^2);
o.dx1(o.low) = -o.rL(o.low) + o.dx(o.low);
o.dx2(o.upp) = -o.rU(o.upp) - o.dx(o.upp);
o.dz1(o.low) = (o.cL(o.low) - o.z1(o.low) .* o.dx1(o.low)) ./ o.x1(o.low);
o.dz2(o.upp) = (o.cU(o.upp) - o.z2(o.upp) .* o.dx2(o.upp)) ./ o.x2(o.upp);
end
end
end