-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathThermalConvection2D.jl
199 lines (185 loc) · 9.62 KB
/
ThermalConvection2D.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
const USE_GPU = false # Use GPU? If this is set false, then no GPU needs to be available
using ParallelStencil
using ParallelStencil.FiniteDifferences2D
@static if USE_GPU
@init_parallel_stencil(CUDA, Float64, 2)
else
@init_parallel_stencil(Threads, Float64, 2)
end
using Plots, Printf, Statistics, LinearAlgebra
@parallel function assign!(A::Data.Array, B::Data.Array)
@all(A) = @all(B)
return
end
@parallel function compute_error!(Err_A::Data.Array, A::Data.Array)
@all(Err_A) = @all(Err_A) - @all(A)
return
end
@parallel function compute_0!(RogT::Data.Array, Eta::Data.Array, ∇V::Data.Array, T::Data.Array, Vx::Data.Array, Vy::Data.Array, ρ0gα::Data.Number, η0::Data.Number, dη_dT::Data.Number, ΔT::Data.Number, dx::Data.Number, dy::Data.Number)
@all(RogT) = ρ0gα*@all(T)
@all(Eta) = η0*(1.0 - dη_dT*(@all(T) + ΔT/2.0))
@all(∇V) = @d_xa(Vx)/dx + @d_ya(Vy)/dy
return
end
@parallel function compute_1!(Pt::Data.Array, τxx::Data.Array, τyy::Data.Array, σxy::Data.Array, Eta::Data.Array, ∇V::Data.Array, Vx::Data.Array, Vy::Data.Array, dτ_iter::Data.Number, β::Data.Number, dx::Data.Number, dy::Data.Number)
@all(Pt) = @all(Pt) - dτ_iter/β*@all(∇V)
@all(τxx) = 2.0*@all(Eta)*(@d_xa(Vx)/dx - 1.0/3.0*@all(∇V))
@all(τyy) = 2.0*@all(Eta)*(@d_ya(Vy)/dy - 1.0/3.0*@all(∇V))
@all(σxy) = 2.0*@av(Eta)*(0.5*(@d_yi(Vx)/dy + @d_xi(Vy)/dx))
return
end
@parallel function compute_2!(Rx::Data.Array, Ry::Data.Array, dVxdτ::Data.Array, dVydτ::Data.Array, Pt::Data.Array, RogT::Data.Array, τxx::Data.Array, τyy::Data.Array, σxy::Data.Array, ρ::Data.Number, dampX::Data.Number, dampY::Data.Number, dτ_iter::Data.Number, dx::Data.Number, dy::Data.Number)
@all(Rx) = 1.0/ρ *(@d_xi(τxx)/dx + @d_ya(σxy)/dy - @d_xi(Pt)/dx )
@all(Ry) = 1.0/ρ *(@d_yi(τyy)/dy + @d_xa(σxy)/dx - @d_yi(Pt)/dy + @av_yi(RogT))
@all(dVxdτ) = dampX*@all(dVxdτ) + @all(Rx)*dτ_iter
@all(dVydτ) = dampY*@all(dVydτ) + @all(Ry)*dτ_iter
return
end
@parallel function update_V!(Vx::Data.Array, Vy::Data.Array, dVxdτ::Data.Array, dVydτ::Data.Array, dτ_iter::Data.Number)
@inn(Vx) = @inn(Vx) + @all(dVxdτ)*dτ_iter
@inn(Vy) = @inn(Vy) + @all(dVydτ)*dτ_iter
return
end
@parallel function compute_qT!(qTx::Data.Array, qTy::Data.Array, T::Data.Array, DcT::Data.Number, dx::Data.Number, dy::Data.Number)
@all(qTx) = -DcT*@d_xi(T)/dx
@all(qTy) = -DcT*@d_yi(T)/dy
return
end
@parallel_indices (ix,iy) function advect_T!(dT_dt::Data.Array, qTx::Data.Array, qTy::Data.Array, T::Data.Array, Vx::Data.Array, Vy::Data.Array, dx::Data.Number, dy::Data.Number)
if (ix<=size(dT_dt, 1) && iy<=size(dT_dt, 2)) dT_dt[ix,iy] = -((qTx[ix+1,iy]-qTx[ix,iy])/dx + (qTy[ix,iy+1]-qTy[ix,iy])/dy) -
(Vx[ix+1,iy+1]>0)*Vx[ix+1,iy+1]*(T[ix+1,iy+1]-T[ix ,iy+1])/dx -
(Vx[ix+2,iy+1]<0)*Vx[ix+2,iy+1]*(T[ix+2,iy+1]-T[ix+1,iy+1])/dx -
(Vy[ix+1,iy+1]>0)*Vy[ix+1,iy+1]*(T[ix+1,iy+1]-T[ix+1,iy ])/dy -
(Vy[ix+1,iy+2]<0)*Vy[ix+1,iy+2]*(T[ix+1,iy+2]-T[ix+1,iy+1])/dy end
return
end
@parallel function update_T!(T::Data.Array, T_old::Data.Array, dT_dt::Data.Array, dt::Data.Number)
@inn(T) = @inn(T_old) + @all(dT_dt)*dt
return
end
@parallel_indices (ix,iy) function no_fluxY_T!(T::Data.Array)
if (ix==size(T, 1) && iy<=size(T ,2)) T[ix,iy] = T[ix-1,iy] end
if (ix==1 && iy<=size(T ,2)) T[ix,iy] = T[ix+1,iy] end
return
end
@parallel_indices (iy) function bc_x!(A::Data.Array)
A[1 , iy] = A[2 , iy]
A[end, iy] = A[end-1, iy]
return
end
@parallel_indices (ix) function bc_y!(A::Data.Array)
A[ix, 1 ] = A[ix, 2 ]
A[ix, end] = A[ix, end-1]
return
end
##################################################
@views function ThermalConvection2D()
# Physics - dimentionally independent scales
ly = 1.0 # domain extend, m
η0 = 1.0 # viscosity, Pa*s
DcT = 1.0 # heat diffusivity, m^2/s
ΔT = 1.0 # initial temperature perturbation K
# Physics - nondim numbers
Ra = 1e7 # Raleigh number = ρ0*g*α*ΔT*ly^3/η0/DcT
Pra = 1e3 # Prandtl number = η0/ρ0/DcT
ar = 3 # aspect ratio
# Physics - dimentionally dependent parameters
lx = ar*ly # domain extend, m
w = 1e-2*ly # initial perturbation standard deviation, m
ρ0gα = Ra*η0*DcT/ΔT/ly^3 # thermal expansion
dη_dT = 1e-10/ΔT # viscosity's temperature dependence
# Numerics
nx, ny = 96*ar-1, 96-1 # numerical grid resolutions; should be a mulitple of 32-1 for optimal GPU perf
iterMax = 5*10^4 # maximal number of pseudo-transient iterations
nt = 3000 # total number of timesteps
nout = 10 # frequency of plotting
nerr = 100 # frequency of error checking
ε = 1e-4 # nonlinear absolute tolerence
dmp = 2 # damping paramter
st = 5 # quiver plotting spatial step
# Derived numerics
dx, dy = lx/(nx-1), ly/(ny-1) # cell size
ρ = 1.0/Pra*η0/DcT # density
dt_diff = 1.0/4.1*min(dx,dy)^2/DcT # diffusive CFL timestep limiter
dτ_iter = 1.0/6.1*min(dx,dy)/sqrt(η0/ρ) # iterative CFL pseudo-timestep limiter
β = 6.1*dτ_iter^2/min(dx,dy)^2/ρ # numerical bulk compressibility
dampX = 1.0-dmp/nx # damping term for the x-momentum equation
dampY = 1.0-dmp/ny # damping term for the y-momentum equation
# Array allocations
T = @zeros(nx ,ny )
T .= Data.Array([ΔT*exp(-(((ix-1)*dx-0.5*lx)/w)^2 -(((iy-1)*dy-0.5*ly)/w)^2) for ix=1:size(T,1), iy=1:size(T,2)])
T[:,1 ] .= ΔT/2.0
T[:,end] .= -ΔT/2.0
T_old = @zeros(nx ,ny )
Pt = @zeros(nx ,ny )
∇V = @zeros(nx ,ny )
Vx = @zeros(nx+1,ny )
Vy = @zeros(nx ,ny+1)
RogT = @zeros(nx ,ny )
Eta = @zeros(nx ,ny )
τxx = @zeros(nx ,ny )
τyy = @zeros(nx ,ny )
σxy = @zeros(nx-1,ny-1)
Rx = @zeros(nx-1,ny-2)
Ry = @zeros(nx-2,ny-1)
dVxdτ = @zeros(nx-1,ny-2)
dVydτ = @zeros(nx-2,ny-1)
dτVx = @zeros(nx-1,ny-2)
dτVy = @zeros(nx-2,ny-1)
qTx = @zeros(nx-1,ny-2)
qTy = @zeros(nx-2,ny-1)
dT_dt = @zeros(nx-2,ny-2)
ErrP = @zeros(nx ,ny )
ErrV = @zeros(nx ,ny+1)
# Preparation of visualisation
ENV["GKSwstype"]="nul"; if isdir("viz2D_out")==false mkdir("viz2D_out") end; loadpath = "./viz2D_out/"; anim = Animation(loadpath,String[])
println("Animation directory: $(anim.dir)")
X, Y = -lx/2:dx:lx/2, -ly/2:dy:ly/2
Xc, Yc = [x for x=X, y=Y], [y for x=X,y=Y]
Xp, Yp = Xc[1:st:end,1:st:end], Yc[1:st:end,1:st:end]
# Time loop
err_evo1=[]; err_evo2=[]
for it = 1:nt
@parallel assign!(T_old, T)
errV, errP = 2*ε, 2*ε; iter=1; niter=0
while (errV > ε || errP > ε) && iter <= iterMax
@parallel assign!(ErrV, Vy)
@parallel assign!(ErrP, Pt)
@parallel compute_0!(RogT, Eta, ∇V, T, Vx, Vy, ρ0gα, η0, dη_dT, ΔT, dx, dy)
@parallel compute_1!(Pt, τxx, τyy, σxy, Eta, ∇V, Vx, Vy, dτ_iter, β, dx, dy)
@parallel compute_2!(Rx, Ry, dVxdτ, dVydτ, Pt, RogT, τxx, τyy, σxy, ρ, dampX, dampY, dτ_iter, dx, dy)
@parallel update_V!(Vx, Vy, dVxdτ, dVydτ, dτ_iter)
@parallel (1:size(Vx,1)) bc_y!(Vx)
@parallel (1:size(Vy,2)) bc_x!(Vy)
@parallel compute_error!(ErrV, Vy)
@parallel compute_error!(ErrP, Pt)
if mod(iter,nerr) == 0
errV = maximum(abs.(Array(ErrV)))/(1e-12 + maximum(abs.(Array(Vy))))
errP = maximum(abs.(Array(ErrP)))/(1e-12 + maximum(abs.(Array(Pt))))
push!(err_evo1, max(errV, errP)); push!(err_evo2,iter)
# @printf("Total steps = %d, errV=%1.3e, errP=%1.3e \n", iter, errV, errP)
end
iter+=1; niter+=1
end
# Thermal solver
@parallel compute_qT!(qTx, qTy, T, DcT, dx, dy)
@parallel advect_T!(dT_dt, qTx, qTy, T, Vx, Vy, dx, dy)
dt_adv = min(dx/maximum(abs.(Array(Vx))), dy/maximum(abs.(Array(Vy))))/2.1
dt = min(dt_diff, dt_adv)
@parallel update_T!(T, T_old, dT_dt, dt)
@parallel no_fluxY_T!(T)
@printf("it = %d (iter = %d), errV=%1.3e, errP=%1.3e \n", it, niter, errV, errP)
# Visualization
if mod(it,nout)==0
heatmap(X, Y, Array(T)', aspect_ratio=1, xlims=(X[1], X[end]), ylims=(Y[1], Y[end]), c=:inferno, clims=(-0.1,0.1), title="T° (it = $it of $nt)")
Vxp = 0.5*(Vx[1:st:end-1,1:st:end ]+Vx[2:st:end,1:st:end])
Vyp = 0.5*(Vy[1:st:end ,1:st:end-1]+Vy[1:st:end,2:st:end])
Vscale = 1/maximum(sqrt.(Vxp.^2 + Vyp.^2)) * dx*(st-1)
quiver!(Xp[:], Yp[:], quiver=(Vxp[:]*Vscale, Vyp[:]*Vscale), lw=0.1, c=:blue); frame(anim)
# display( quiver!(Xp[:], Yp[:], quiver=(Vxp[:]*Vscale, Vyp[:]*Vscale), lw=0.1, c=:blue) )
end
end
gif(anim, "ThermalConvect2D.gif", fps = 15)
return
end
ThermalConvection2D()