-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathStokes2D.jl
143 lines (134 loc) · 7.04 KB
/
Stokes2D.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
const USE_GPU = false # Use GPU? If this is set false, then no GPU needs to be available
using ParallelStencil
using ParallelStencil.FiniteDifferences2D
@static if USE_GPU
@init_parallel_stencil(CUDA, Float64, 2)
else
@init_parallel_stencil(Threads, Float64, 2)
end
using Plots, Printf, Statistics, LinearAlgebra
@parallel function compute_timesteps!(dτVx::Data.Array, dτVy::Data.Array, dτPt::Data.Array, Mus::Data.Array, Vsc::Data.Number, Ptsc::Data.Number, min_dxy2::Data.Number, max_nxy::Int)
@all(dτVx) = Vsc*min_dxy2/@av_xi(Mus)/4.1
@all(dτVy) = Vsc*min_dxy2/@av_yi(Mus)/4.1
@all(dτPt) = Ptsc*4.1*@all(Mus)/max_nxy
return
end
@parallel function compute_P!(∇V::Data.Array, Pt::Data.Array, Vx::Data.Array, Vy::Data.Array, dτPt::Data.Array, dx::Data.Number, dy::Data.Number)
@all(∇V) = @d_xa(Vx)/dx + @d_ya(Vy)/dy
@all(Pt) = @all(Pt) - @all(dτPt)*@all(∇V)
return
end
@parallel function compute_τ!(∇V::Data.Array, τxx::Data.Array, τyy::Data.Array, τxy::Data.Array, Vx::Data.Array, Vy::Data.Array, Mus::Data.Array, dx::Data.Number, dy::Data.Number)
@all(τxx) = 2.0*@all(Mus)*(@d_xa(Vx)/dx - 1.0/3.0*@all(∇V))
@all(τyy) = 2.0*@all(Mus)*(@d_ya(Vy)/dy - 1.0/3.0*@all(∇V))
@all(τxy) = 2.0*@av(Mus)*(0.5*(@d_yi(Vx)/dy + @d_xi(Vy)/dx))
return
end
@parallel function compute_dV!(Rx::Data.Array, Ry::Data.Array, dVxdτ::Data.Array, dVydτ::Data.Array, Pt::Data.Array, Rog::Data.Array, τxx::Data.Array, τyy::Data.Array, τxy::Data.Array, dampX::Data.Number, dampY::Data.Number, dx::Data.Number, dy::Data.Number)
@all(Rx) = @d_xi(τxx)/dx + @d_ya(τxy)/dy - @d_xi(Pt)/dx
@all(Ry) = @d_yi(τyy)/dy + @d_xa(τxy)/dx - @d_yi(Pt)/dy + @av_yi(Rog)
@all(dVxdτ) = dampX*@all(dVxdτ) + @all(Rx)
@all(dVydτ) = dampY*@all(dVydτ) + @all(Ry)
return
end
@parallel function compute_V!(Vx::Data.Array, Vy::Data.Array, dVxdτ::Data.Array, dVydτ::Data.Array, dτVx::Data.Array, dτVy::Data.Array)
@inn(Vx) = @inn(Vx) + @all(dτVx)*@all(dVxdτ)
@inn(Vy) = @inn(Vy) + @all(dτVy)*@all(dVydτ)
return
end
@parallel_indices (ix,iy) function bc_x!(A::Data.Array)
A[1 , iy] = A[2 , iy]
A[end, iy] = A[end-1, iy]
return
end
@parallel_indices (ix,iy) function bc_y!(A::Data.Array)
A[ix, 1 ] = A[ix, 2 ]
A[ix, end] = A[ix, end-1]
return
end
##################################################
@views function Stokes2D()
# Physics
lx, ly = 10.0, 10.0 # domain extends
μs0 = 1.0 # matrix viscosity
μsi = 0.1 # inclusion viscosity
ρgi = 1.0 # inclusion density*gravity perturbation
# Numerics
iterMax = 10000 # maximum number of pseudo-transient iterations
nout = 200 # error checking frequency
Vdmp = 4.0 # damping paramter for the momentum equations
Vsc = 1.0 # relaxation paramter for the momentum equations pseudo-timesteps limiters
Ptsc = 1.0/4.0 # relaxation paramter for the pressure equation pseudo-timestep limiter
ε = 1e-6 # nonlinear absolute tolerence
nx, ny = 127, 127 # numerical grid resolution; should be a mulitple of 32-1 for optimal GPU perf
# Derived numerics
dx, dy = lx/(nx-1), ly/(ny-1) # cell sizes
min_dxy2 = min(dx,dy)^2
max_nxy = max(nx,ny)
dampX = 1.0-Vdmp/nx # damping term for the x-momentum equation
dampY = 1.0-Vdmp/ny # damping term for the y-momentum equation
# Array allocations
Pt = @zeros(nx ,ny )
dτPt = @zeros(nx ,ny )
∇V = @zeros(nx ,ny )
Vx = @zeros(nx+1,ny )
Vy = @zeros(nx ,ny+1)
τxx = @zeros(nx ,ny )
τyy = @zeros(nx ,ny )
τxy = @zeros(nx-1,ny-1)
Rx = @zeros(nx-1,ny-2)
Ry = @zeros(nx-2,ny-1)
dVxdτ = @zeros(nx-1,ny-2)
dVydτ = @zeros(nx-2,ny-1)
dτVx = @zeros(nx-1,ny-2)
dτVy = @zeros(nx-2,ny-1)
# Initial conditions
Radc = zeros(nx ,ny )
Rog = zeros(nx ,ny )
Mus = μs0*ones(nx,ny)
Radc .= [((ix-1)*dx-0.5*lx)^2 + ((iy-1)*dy-0.5*ly)^2 for ix=1:size(Radc,1), iy=1:size(Radc,2)]
Mus[Radc.<1.0] .= μsi
Rog[Radc.<1.0] .= ρgi
Mus = Data.Array(Mus)
Rog = Data.Array(Rog)
# Preparation of visualisation
ENV["GKSwstype"]="nul"; if isdir("viz2D_out")==false mkdir("viz2D_out") end; loadpath = "./viz2D_out/"; anim = Animation(loadpath,String[])
println("Animation directory: $(anim.dir)")
X, Y, Yv = 0:dx:lx, 0:dy:ly, (-dy/2):dy:(ly+dy/2)
# Time loop
@parallel compute_timesteps!(dτVx, dτVy, dτPt, Mus, Vsc, Ptsc, min_dxy2, max_nxy)
err=2*ε; iter=1; niter=0; err_evo1=[]; err_evo2=[]
while err > ε && iter <= iterMax
if (iter==11) global wtime0 = Base.time() end
@parallel compute_P!(∇V, Pt, Vx, Vy, dτPt, dx, dy)
@parallel compute_τ!(∇V, τxx, τyy, τxy, Vx, Vy, Mus, dx, dy)
@parallel compute_dV!(Rx, Ry, dVxdτ, dVydτ, Pt, Rog, τxx, τyy, τxy, dampX, dampY, dx, dy)
@parallel compute_V!(Vx, Vy, dVxdτ, dVydτ, dτVx, dτVy)
@parallel (1:size(Vx,1), 1:size(Vx,2)) bc_y!(Vx)
@parallel (1:size(Vy,1), 1:size(Vy,2)) bc_x!(Vy)
if mod(iter,nout)==0
global mean_Rx, mean_Ry, mean_∇V
mean_Rx = mean(abs.(Rx)); mean_Ry = mean(abs.(Ry)); mean_∇V = mean(abs.(∇V))
err = maximum([mean_Rx, mean_Ry, mean_∇V])
push!(err_evo1, maximum([mean_Rx, mean_Ry, mean_∇V])); push!(err_evo2,iter)
@printf("Total steps = %d, err = %1.3e [mean_Rx=%1.3e, mean_Ry=%1.3e, mean_∇V=%1.3e] \n", iter, err, mean_Rx, mean_Ry, mean_∇V)
end
iter+=1; niter+=1
end
# Performance
wtime = Base.time() - wtime0
A_eff = (3*2)/1e9*nx*ny*sizeof(Data.Number) # Effective main memory access per iteration [GB] (Lower bound of required memory access: Te has to be read and written: 2 whole-array memaccess; Ci has to be read: : 1 whole-array memaccess)
wtime_it = wtime/(niter-10) # Execution time per iteration [s]
T_eff = A_eff/wtime_it # Effective memory throughput [GB/s]
@printf("Total steps = %d, err = %1.3e, time = %1.3e sec (@ T_eff = %1.2f GB/s) \n", niter, err, wtime, round(T_eff, sigdigits=2))
# Visualisation
p1 = heatmap(X, Y, Array(Pt)', aspect_ratio=1, xlims=(X[1],X[end]), ylims=(Y[1],Y[end]), c=:inferno, title="Pressure")
p2 = heatmap(X, Yv, Array(Vy)', aspect_ratio=1, xlims=(X[1],X[end]), ylims=(Yv[1],Yv[end]), c=:inferno, title="Vy")
p4 = heatmap(X[2:end-1], Yv[2:end-1], log10.(abs.(Array(Ry)')), aspect_ratio=1, xlims=(X[2],X[end-1]), ylims=(Yv[2],Yv[end-1]), c=:inferno, title="log10(Ry)")
p5 = plot(err_evo2,err_evo1, legend=false, xlabel="# iterations", ylabel="log10(error)", linewidth=2, markershape=:circle, markersize=3, labels="max(error)", yaxis=:log10)
# display(plot(p1, p2, p4, p5))
plot(p1, p2, p4, p5); frame(anim)
gif(anim, "Stokes2D.gif", fps = 15)
return
end
Stokes2D()