-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathnbe-hoas.agda
54 lines (41 loc) · 1.3 KB
/
nbe-hoas.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
{-# OPTIONS --no-positivity-check #-}
-- from Bob Atkey
module nbe-hoas where
lamOp : (a : Set) -> Set
lamOp a = (a -> a) -> a
appOp : (a : Set) -> Set
appOp a = a -> a -> a
openHoas : Set -> Set
openHoas a = lamOp a -> appOp a -> a
hoasTerm : Set1
hoasTerm = forall {A} -> openHoas A
mutual
data neutral (v : Set) : Set where
V : v -> neutral v
A : neutral v -> sem v -> neutral v
data sem (v : Set) : Set where
L : (sem v -> sem v) -> sem v
N : neutral v -> sem v
eval : {v : Set} -> hoasTerm -> sem v
eval {v} f = f L helper
where helper : sem v -> sem v -> sem v
helper (L f) y = f y
helper (N n) y = N (A n y)
mutual
reify : {exp : Set} ->
lamOp exp ->
appOp exp ->
sem exp -> exp
reify lam app (L f) = lam (\ x -> reify lam app (f (N (V x))))
reify lam app (N n) = reifyn lam app n
reifyn : {exp : Set} ->
lamOp exp -> appOp exp ->
neutral exp -> exp
reifyn lam app (V v) = v
reifyn lam app (A n d) = app (reifyn lam app n) (reify lam app d)
norm : hoasTerm -> hoasTerm
norm t = \ lam _·_ -> reify lam _·_ (eval t)
t1 : hoasTerm
t1 lam _·_ = (lam \ x -> lam \ y -> x · y) · (lam \ x -> x)
t2 : hoasTerm
t2 lam _·_ = lam \ z -> ((lam \ x -> lam \ y -> x · y) · z) · (lam \ x -> lam \ y -> x · y)