-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_semi_anneal_T.py
689 lines (584 loc) · 30.8 KB
/
train_semi_anneal_T.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
# using semi-supervised learning with anneal temperature
# Frozen BN when set is_training as false
import sys
sys.path.append("/workspace/code/infant-project/SPN") # todo set path to your code directory
import warnings
warnings.filterwarnings("ignore")
import argparse
import torch
from torch.utils import data
import numpy as np
import cv2
from torch.autograd import Variable
import torch.optim as optim
import torch.backends.cudnn as cudnn
import os
import os.path as osp
import timeit
import math
from PIL import Image
from SegUtils.transforms import vl2im
from ProUtils.misc import Logger
from SPN.SPNet import SemiSPNet, resnet_feature_layers
from SPNUtils.dataset import SegTrainSemi
from ProUtils.misc import vl2ch
import random
import numpy.random
import sys
start = timeit.default_timer()
BATCH_SIZE = 20
TOPK = 20
MAX_EPOCH = 40
root_dir = '/data/GMS-data/hfn5052/spn-youtube-infant' # todo the path to save training results
data_dir = "/data/youtube-infant-body-parsing" # todo the path to training data
GPU = "7"
T = 0.4
base_dist = 2/3 # final p_2 = 1-base_dist
postfix = "-spn-semi-anneal-T%.2f-B%.2f" % (T, base_dist)
# todo the image mean of dataset
IMG_MEAN = np.array((101.84807705937696, 112.10832843463207, 111.65973036298041), dtype=np.float32)
INPUT_SIZE = '256, 256'
# todo the class distribution
CLASS_DISTRI = [3.28588037e+08, 2.47989400e+07, 2.46785900e+07, 5.26057730e+07, 4.05293800e+07]
LEARNING_RATE = 2.5e-4
MOMENTUM = 0.9
NUM_CLASSES = 5
POWER = 0.9
RANDOM_SEED = 1234
# todo the path to pretrained COCO dataset, which can be downloaded from
# https://drive.google.com/file/d/0BxhUwxvLPO7TVFJQU1dwbXhHdEk/view?resourcekey=0-7UxnHrm5eDCyvz2G35aKgA
RESTORE_MATNET_FROM = "/data/GMS-data/hfn5052/ExtractNet/MS_DeepLab_resnet_pretrained_COCO_init.pth"
RESTORE_SEGNET_FROM = "/data/GMS-data/hfn5052/ExtractNet/MS_DeepLab_resnet_pretrained_COCO_init.pth"
RESTORE_SPNET_FROM = ""
NUM_EXAMPLES_PER_EPOCH = int(3e4)
SAVE_PRED_EVERY = (MAX_EPOCH*NUM_EXAMPLES_PER_EPOCH//BATCH_SIZE)//5
SNAPSHOT_DIR = os.path.join(root_dir, 'snapshots' + postfix)
IMGSHOT_DIR = os.path.join(root_dir, 'imgshots' + postfix)
WEIGHT_DECAY = 0.0005
NUM_STEPS_PER_EPOCH = math.ceil(NUM_EXAMPLES_PER_EPOCH / float(BATCH_SIZE))
MAX_ITER = max(NUM_EXAMPLES_PER_EPOCH * MAX_EPOCH + 1,
NUM_STEPS_PER_EPOCH * BATCH_SIZE * MAX_EPOCH + 1)
os.makedirs(SNAPSHOT_DIR, exist_ok=True)
os.makedirs(IMGSHOT_DIR, exist_ok=True)
LOG_PATH = SNAPSHOT_DIR + "/B"+format(BATCH_SIZE, "04d")+"E"+format(MAX_EPOCH, "04d")+".log"
sys.stdout = Logger(LOG_PATH, sys.stdout)
print(postfix)
print("RESTORE_PROPNET_FROM", RESTORE_MATNET_FROM)
print("RESTORE_SEGNET_FROM", RESTORE_SEGNET_FROM)
print("RESTORE_SPNET_FROM", RESTORE_SPNET_FROM)
print("num of epoch:", MAX_EPOCH)
print(NUM_EXAMPLES_PER_EPOCH)
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="SPN")
parser.add_argument("--fine-tune", default=True)
parser.add_argument("--set-start", default=False)
parser.add_argument("--start-step", default=0, type=int)
parser.add_argument("--topK", default=TOPK)
parser.add_argument("--T", default=T)
parser.add_argument("--optim", default='sgd')
parser.add_argument("--is-training", default=False,
help="Whether to freeze BN layers, False for Freezing")
parser.add_argument("--img-dir", type=str, default=IMGSHOT_DIR,
help="Where to save images of the model.")
parser.add_argument("--num-workers", default=16)
parser.add_argument("--final-step", type=int, default=int(NUM_STEPS_PER_EPOCH * MAX_EPOCH),
help="Number of training steps.")
parser.add_argument("--gpu", default=GPU,
help="choose gpu device.")
parser.add_argument('--print-freq', '-p', default=5, type=int,
metavar='N', help='print frequency')
parser.add_argument('--save-img-freq', default=200, type=int,
metavar='N', help='save image frequency')
parser.add_argument("--batch-size", type=int, default=BATCH_SIZE,
help="Number of images sent to the network in one step.")
parser.add_argument("--input-size", type=str, default=INPUT_SIZE,
help="Comma-separated string with height and width of images.")
parser.add_argument("--learning-rate", type=float, default=LEARNING_RATE,
help="Base learning rate for training with polynomial decay.")
parser.add_argument("--momentum", type=float, default=MOMENTUM,
help="Momentum component of the optimiser.")
parser.add_argument("--num-classes", type=int, default=NUM_CLASSES,
help="Number of classes to predict (including background).")
parser.add_argument("--power", type=float, default=POWER,
help="Decay parameter to compute the learning rate.")
parser.add_argument("--random-mirror", default=True,
help="Whether to randomly mirror the inputs during the training.")
parser.add_argument("--random-jitter", default=True)
parser.add_argument("--random-rotate", default=True)
parser.add_argument("--random-seed", type=int, default=RANDOM_SEED,
help="Random seed to have reproducible results.")
parser.add_argument("--restore-matnet-from", type=str, default=RESTORE_MATNET_FROM,
help="Where restore model parameters from.")
parser.add_argument("--restore-segnet-from", type=str, default=RESTORE_SEGNET_FROM,
help="Where restore model parameters from.")
parser.add_argument("--restore-spnet-from", default=RESTORE_SPNET_FROM)
parser.add_argument("--save-pred-every", type=int, default=SAVE_PRED_EVERY,
help="Save checkpoint every often.")
parser.add_argument("--snapshot-dir", type=str, default=SNAPSHOT_DIR,
help="Where to save snapshots of the model.")
parser.add_argument("--weight-decay", type=float, default=WEIGHT_DECAY,
help="Regularisation parameter for L2-loss.")
parser.add_argument("--class-distri", default=CLASS_DISTRI)
return parser.parse_args()
args = get_arguments()
def pr_poly(actual_step, max_iter, T):
return 1 - ((float(actual_step*args.batch_size) / max_iter) ** T)*(base_dist)
def get_1x_lr_params(model):
"""
This generator returns all the parameters of the net except for
the last classification layer. Note that for each batchnorm layer,
requires_grad is set to False in deeplab_resnet.py, therefore this function does not return
any batchnorm parameter
"""
b = []
b.append(model.CommonFeatureExtract)
b.append(model.MatFeatureExtract)
b.append(model.SegFeatureExtract)
for i, layers in enumerate(b):
for j in layers.parameters():
if j.requires_grad:
yield j
def get_10x_lr_params(model):
"""
This generator returns all the parameters for the last layer of the net,
which does the classification of pixel into classes
"""
b = []
b.append(model.SegClassifier.parameters())
for j in range(len(b)):
for i in b[j]:
if i.requires_grad:
yield i
def loss_calc(pred, label, class_weight=None):
"""
This function returns cross entropy loss for semantic segmentation
"""
# out shape batch_size x channels x h x w -> batch_size x channels x h x w
# label shape h x w x 1 x batch_size -> batch_size x 1 x h x w
label = Variable(label.long()).cuda()
criterion = torch.nn.CrossEntropyLoss(weight=torch.Tensor(class_weight)).cuda()
return criterion(pred, label)
def dist_loss_calc(pred, label, class_weight=None, alpha=1e-6): # original:alpha, 1e-6
b, c, h, w = pred.size()
softmax = torch.nn.Softmax(dim=1)
logsoftmax = torch.nn.LogSoftmax(dim=1)
if class_weight is None:
loss = -softmax(label)*logsoftmax(pred)
loss = loss.sum(dim=(1, 2, 3)).mean()
else:
loss = -softmax(label)*logsoftmax(pred)
class_weight = torch.from_numpy(class_weight).to(torch.float32)
class_weight = class_weight.view(1, 5, 1, 1)
class_weight = class_weight.repeat(b, 1, h, w).cuda()
loss = loss*class_weight
loss = loss.sum(dim=(1, 2, 3)).mean()
return loss*alpha
def lr_poly(base_lr, iter, max_iter, power):
return base_lr * ((1 - float(iter) / max_iter) ** (power))
def adjust_learning_rate(optimizer, actual_step):
"""Original Author: Sets the learning rate to the initial LR divided by 5 at 60th, 120th and 160th epochs"""
lr = lr_poly(args.learning_rate, actual_step * args.batch_size, MAX_ITER, args.power)
optimizer.param_groups[0]['lr'] = lr
optimizer.param_groups[1]['lr'] = 10 * lr
def resize_target(target, size):
new_target = np.zeros((target.shape[0], size, size), np.float32)
for i, t in enumerate(target.cpu().numpy()):
new_target[i, ...] = cv2.resize(t, (size,) * 2, interpolation=cv2.INTER_NEAREST)
return torch.from_numpy(new_target).long()
def main():
"""Create the model and start the training."""
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
h, w = map(int, args.input_size.split(','))
cudnn.enabled = True
torch.manual_seed(args.random_seed)
random.seed(args.random_seed)
np.random.seed(args.random_seed)
model = SemiSPNet(h=int(h / 8), w=int(w / 8),
K=args.topK,
num_classes=args.num_classes)
model = model.cuda()
if args.fine_tune:
# load pretrained MatNet Model
saved_matnet_state_dict = torch.load(args.restore_matnet_from)
for name, _ in model.CommonFeatureExtract.state_dict().items():
if "num_batches_tracked" in name.split('.'):
continue
ckpt_name = name.replace("model." + name.split('.')[1],
"Scale." + resnet_feature_layers[int(name.split('.')[1])])
model.CommonFeatureExtract.state_dict()[name].copy_(saved_matnet_state_dict[ckpt_name])
for name, _ in model.MatFeatureExtract.state_dict().items():
if "num_batches_tracked" in name.split('.'):
continue
ckpt_name = name.replace("model.", "Scale.layer4.")
model.MatFeatureExtract.state_dict()[name].copy_(saved_matnet_state_dict[ckpt_name])
# load pretrained SegNet Model
saved_segnet_state_dict = torch.load(args.restore_segnet_from)
for name, _ in model.SegFeatureExtract.state_dict().items():
if "num_batches_tracked" in name.split('.'):
continue
ckpt_name = name.replace("model", "Scale.layer4")
model.SegFeatureExtract.state_dict()[name].copy_(saved_segnet_state_dict[ckpt_name])
print("==> finetuning from checkpoint '{}' and '{}'".format(args.restore_matnet_from,
args.restore_segnet_from))
elif args.restore_spnet_from:
if os.path.isfile(args.restore_spnet_from):
print("=> loading checkpoint '{}'".format(args.restore_spnet_from))
checkpoint = torch.load(args.restore_spnet_from)
if args.set_start:
args.start_step = int(math.ceil(checkpoint['example'] / args.batch_size))
model.load_state_dict(checkpoint["state_dict"])
print("=> loaded checkpoint '{}' (step {})"
.format(args.restore_spnet_from, args.start_step))
else:
raise NotImplementedError("=> no checkpoint found at '{}'".format(args.restore_spnet_from))
else:
raise NotImplementedError("NO CHECKPOINT LOADED!!!")
print("optimizer:", args.optim)
if not args.is_training:
# Frozen BN
# when training, the model will use the running means and the
# running vars of the pretrained model.
# But note that eval() doesn't turn off history tracking.
for name, param in model.named_parameters():
if name.find('bn') != -1:
param.requires_grad = False
print("Freezing BN layers")
optimizer = optim.SGD([{'params': get_1x_lr_params(model), 'lr': args.learning_rate},
{'params': get_10x_lr_params(model), 'lr': 10 * args.learning_rate}],
lr=args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay)
model.eval()
else:
raise NotImplementedError("Normal BN layers")
if args.set_start:
adjust_learning_rate(optimizer, args.start_step)
print("now learning rate is:", optimizer.param_groups[0]['lr'])
model.cuda()
cudnn.benchmark = True
# todo rewriting your own dataloader
trainloader = data.DataLoader(SegTrainSemi(data_dir=data_dir,
mirror=args.random_mirror,
color_jitter=args.random_jitter,
rotate=args.random_rotate,
mean=IMG_MEAN,
num_examples=NUM_EXAMPLES_PER_EPOCH),
batch_size=args.batch_size,
shuffle=True, num_workers=args.num_workers)
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
src_seg_losses = AverageMeter()
tar_seg_losses = AverageMeter()
src_mat_losses = AverageMeter()
tar_mat_losses = AverageMeter()
src_losses = AverageMeter()
tar_losses = AverageMeter()
src_img_seg_accuracy = AverageMeter()
src_inf_seg_accuracy = AverageMeter()
tar_img_seg_accuracy = AverageMeter()
tar_inf_seg_accuracy = AverageMeter()
src_img_mat_accuracy = AverageMeter()
src_inf_mat_accuracy = AverageMeter()
tar_img_mat_accuracy = AverageMeter()
tar_inf_mat_accuracy = AverageMeter()
src_img_seg_mat_accuracy = AverageMeter()
src_inf_seg_mat_accuracy = AverageMeter()
tar_img_seg_mat_accuracy = AverageMeter()
tar_inf_seg_mat_accuracy = AverageMeter()
# weight computation
class_distri = np.array(args.class_distri)
normalized_class_distri = class_distri / np.sum(class_distri)
class_weight = 1 / normalized_class_distri
print("class weight:", class_weight)
fake_lbl = np.zeros((h, w), dtype=np.uint8)
cnt = 0
src_inf_seg_acc = 0
tar_inf_seg_acc = 0
src_inf_mat_acc = 0
tar_inf_mat_acc = 0
actual_step = args.start_step
while actual_step < args.final_step:
iter_end = timeit.default_timer()
for i_iter, batch in enumerate(trainloader):
actual_step = int(args.start_step + cnt)
# random choose a dataloader
# 0: unsupervised, 1: semi-supervised, 2: supervised
p_2 = pr_poly(actual_step, MAX_ITER, T=args.T)
p_0 = p_1 = (1-p_2)/2
tr_type = np.random.choice([0, 1, 2], p=[p_0, p_1, p_2])
data_time.update(timeit.default_timer() - iter_end)
src_imgs, tar_imgs, src_lbls, tar_lbls, unlabel_src_imgs, unlabel_tar_imgs, \
src_name, tar_name, unlabel_src_name, unlabel_tar_name = batch
bs = src_imgs.size(0)
src_imgs = src_imgs.cuda() if tr_type == 2 else unlabel_src_imgs.cuda()
tar_imgs = tar_imgs.cuda() if tr_type != 0 else unlabel_tar_imgs.cuda()
src_lbls = src_lbls.cuda() if tr_type == 2 else None
tar_lbls = tar_lbls.cuda() if tr_type != 0 else None
src_name = src_name if tr_type == 2 else unlabel_src_name
tar_name = tar_name if tr_type != 0 else unlabel_tar_name
optimizer.zero_grad()
adjust_learning_rate(optimizer, actual_step)
# todo rewriting vl2ch function (single value ==> one-hot representation)
src_lbls_resize = vl2ch(src_lbls).cuda() if tr_type == 2 else None
tar_lbls_resize = vl2ch(tar_lbls).cuda() if tr_type != 0 else None
src_img_seg_lbl, tar_img_seg_lbl, src_img_mat_lbl, tar_img_mat_lbl = model(src_imgs, tar_imgs,
src_lbls_resize,
tar_lbls_resize,
tr_type)
src_img = src_imgs.data.cpu().numpy()[0]
tar_img = tar_imgs.data.cpu().numpy()[0]
del src_imgs, tar_imgs
src_lbls_reshape = resize_target(src_lbls, src_img_mat_lbl.size(2)) if tr_type == 2 else None
tar_lbls_reshape = resize_target(tar_lbls, tar_img_mat_lbl.size(2)) if tr_type != 0 else None
src_seg_loss = loss_calc(src_img_seg_lbl, src_lbls_reshape, class_weight) if tr_type == 2 else None
tar_seg_loss = loss_calc(tar_img_seg_lbl, tar_lbls_reshape, class_weight) if tr_type != 0 else None
src_mat_loss = loss_calc(src_img_mat_lbl, src_lbls_reshape, class_weight) if tr_type == 2 else None
tar_mat_loss = loss_calc(tar_img_mat_lbl, tar_lbls_reshape, class_weight) if tr_type != 0 else None
# measure the difference of two distributions
src_loss = dist_loss_calc(src_img_seg_lbl, src_img_mat_lbl, class_weight)
tar_loss = dist_loss_calc(tar_img_seg_lbl, tar_img_mat_lbl, class_weight)
if tr_type == 2:
loss = (src_seg_loss + tar_seg_loss + src_mat_loss + tar_mat_loss + src_loss + tar_loss)
if tr_type == 1:
loss = (tar_seg_loss + tar_mat_loss + src_loss + tar_loss)
if tr_type == 0:
loss = (src_loss + tar_loss)
losses.update(loss.item(), bs)
if tr_type == 2:
src_seg_losses.update(src_seg_loss.item(), bs)
src_mat_losses.update(src_mat_loss.item(), bs)
if tr_type != 0:
tar_seg_losses.update(tar_seg_loss.item(), bs)
tar_mat_losses.update(tar_mat_loss.item(), bs)
src_losses.update(src_loss.item(), bs)
tar_losses.update(tar_loss.item(), bs)
if tr_type == 2:
src_img_seg_acc = _pixel_accuracy(src_img_seg_lbl.data.cpu().numpy(),
src_lbls_reshape.data.cpu().numpy())
src_inf_seg_acc = _infant_accuracy(src_img_seg_lbl.data.cpu().numpy(),
src_lbls_reshape.data.cpu().numpy())
if tr_type != 0:
tar_img_seg_acc = _pixel_accuracy(tar_img_seg_lbl.data.cpu().numpy(),
tar_lbls_reshape.data.cpu().numpy())
tar_inf_seg_acc = _infant_accuracy(tar_img_seg_lbl.data.cpu().numpy(),
tar_lbls_reshape.data.cpu().numpy())
if tr_type == 2:
src_img_mat_acc = _pixel_accuracy(src_img_mat_lbl.data.cpu().numpy(),
src_lbls_reshape.data.cpu().numpy())
src_inf_mat_acc = _infant_accuracy(src_img_mat_lbl.data.cpu().numpy(),
src_lbls_reshape.data.cpu().numpy())
if tr_type != 0:
tar_img_mat_acc = _pixel_accuracy(tar_img_mat_lbl.data.cpu().numpy(),
tar_lbls_reshape.data.cpu().numpy())
tar_inf_mat_acc = _infant_accuracy(tar_img_mat_lbl.data.cpu().numpy(),
tar_lbls_reshape.data.cpu().numpy())
# the accuracy between the seg and mat of source image
src_img_seg_mat_acc = _dist_pixel_accuracy(src_img_seg_lbl.data.cpu().numpy(),
src_img_mat_lbl.data.cpu().numpy())
src_inf_seg_mat_acc = _dist_infant_accuracy(src_img_seg_lbl.data.cpu().numpy(),
src_img_mat_lbl.data.cpu().numpy())
tar_img_seg_mat_acc = _dist_pixel_accuracy(tar_img_seg_lbl.data.cpu().numpy(),
tar_img_mat_lbl.data.cpu().numpy())
tar_inf_seg_mat_acc = _dist_infant_accuracy(tar_img_seg_lbl.data.cpu().numpy(),
tar_img_mat_lbl.data.cpu().numpy())
if tr_type == 2:
src_img_seg_accuracy.update(src_img_seg_acc, bs)
src_inf_seg_accuracy.update(src_inf_seg_acc, bs)
if tr_type != 0:
tar_img_seg_accuracy.update(tar_img_seg_acc, bs)
tar_inf_seg_accuracy.update(tar_inf_seg_acc, bs)
if tr_type == 2:
src_img_mat_accuracy.update(src_img_mat_acc, bs)
src_inf_mat_accuracy.update(src_inf_mat_acc, bs)
if tr_type != 0:
tar_img_mat_accuracy.update(tar_img_mat_acc, bs)
tar_inf_mat_accuracy.update(tar_inf_mat_acc, bs)
src_img_seg_mat_accuracy.update(src_img_seg_mat_acc, bs)
src_inf_seg_mat_accuracy.update(src_inf_seg_mat_acc, bs)
tar_img_seg_mat_accuracy.update(tar_img_seg_mat_acc, bs)
tar_inf_seg_mat_accuracy.update(tar_inf_seg_mat_acc, bs)
avg_inf_seg_acc = (src_inf_seg_acc + tar_inf_seg_acc)/2
avg_inf_mat_acc = (src_inf_mat_acc + tar_inf_mat_acc)/2
avg_inf_seg_mat_acc = (src_inf_seg_mat_acc + tar_inf_seg_mat_acc)/2
loss.backward()
optimizer.step()
batch_time.update(timeit.default_timer() - iter_end)
if actual_step % args.print_freq == 0:
print('iter: [{0}]{1}/{2}\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'loss {loss.val:.4f} ({loss.avg:.4f})\n'
'src_seg_loss {src_seg_loss.val:.4f} ({src_seg_loss.avg:.4f})\t'
'tar_seg_loss {tar_seg_loss.val:.4f} ({tar_seg_loss.avg:.4f})\n'
'src_mat_loss {src_mat_loss.val:.4f} ({src_mat_loss.avg:.4f})\t'
'tar_mat_loss {tar_mat_loss.val:.4f} ({tar_mat_loss.avg:.4f})\n'
'src_loss {src_loss.val:.11f} ({src_loss.avg:.11f}) '
'tar_loss {tar_loss.val:.11f} ({tar_loss.avg:.11f})\n'
'src_img_seg_acc {src_img_seg_acc.val:.3f} ({src_img_seg_acc.avg:.3f})\t'
'src_inf_seg_acc {src_inf_seg_acc.val:.3f} ({src_inf_seg_acc.avg:.3f})\n'
'tar_img_seg_acc {tar_img_seg_acc.val:.3f} ({tar_img_seg_acc.avg:.3f})\t'
'tar_inf_seg_acc {tar_inf_seg_acc.val:.3f} ({tar_inf_seg_acc.avg:.3f})\n'
'src_img_mat_acc {src_img_mat_acc.val:.3f} ({src_img_mat_acc.avg:.3f})\t'
'src_inf_mat_acc {src_inf_mat_acc.val:.3f} ({src_inf_mat_acc.avg:.3f})\n'
'tar_img_mat_acc {tar_img_mat_acc.val:.3f} ({tar_img_mat_acc.avg:.3f})\t'
'tar_inf_mat_acc {tar_inf_mat_acc.val:.3f} ({tar_inf_mat_acc.avg:.3f})\n'
'src_img_seg_mat_acc {src_img_seg_mat_acc.val:.3f} ({src_img_seg_mat_acc.avg:.3f}) '
'src_inf_seg_mat_acc {src_inf_seg_mat_acc.val:.3f} ({src_inf_seg_mat_acc.avg:.3f})\n'
'tar_img_seg_mat_acc {tar_img_seg_mat_acc.val:.3f} ({tar_img_seg_mat_acc.avg:.3f}) '
'tar_inf_seg_mat_acc {tar_inf_seg_mat_acc.val:.3f} ({tar_inf_seg_mat_acc.avg:.3f})\n'
'p2 {p2:.3f} tr_type {tr_type} seg_acc {seg_acc:.3f} mat_acc {mat_acc:.3f} seg_mat_acc {seg_mat_acc:.3f}\n'
.format(
cnt, actual_step, args.final_step,
batch_time=batch_time,
data_time=data_time,
loss=losses,
src_seg_loss=src_seg_losses,
tar_seg_loss=tar_seg_losses,
src_mat_loss=src_mat_losses,
tar_mat_loss=tar_mat_losses,
src_loss=src_losses,
tar_loss=tar_losses,
src_img_seg_acc=src_img_seg_accuracy,
src_inf_seg_acc=src_inf_seg_accuracy,
tar_img_seg_acc=tar_img_seg_accuracy,
tar_inf_seg_acc=tar_inf_seg_accuracy,
src_img_mat_acc=src_img_mat_accuracy,
src_inf_mat_acc=src_inf_mat_accuracy,
tar_img_mat_acc=tar_img_mat_accuracy,
tar_inf_mat_acc=tar_inf_mat_accuracy,
src_img_seg_mat_acc=src_img_seg_mat_accuracy,
src_inf_seg_mat_acc=src_inf_seg_mat_accuracy,
tar_img_seg_mat_acc=tar_img_seg_mat_accuracy,
tar_inf_seg_mat_acc=tar_inf_seg_mat_accuracy,
p2=p_2,
seg_acc=avg_inf_seg_acc,
mat_acc=avg_inf_mat_acc,
seg_mat_acc=avg_inf_seg_mat_acc,
tr_type=tr_type
))
if actual_step % args.save_img_freq == 0:
# src: img, GT, Seg, Mat
# tar: img, GT, Seg, Mat
msk_size = tar_img_seg_lbl.size(2)
src_img = src_img.transpose(1, 2, 0)
tar_img = tar_img.transpose(1, 2, 0)
src_img = cv2.resize(src_img, (msk_size, msk_size), interpolation=cv2.INTER_NEAREST)
tar_img = cv2.resize(tar_img, (msk_size, msk_size), interpolation=cv2.INTER_NEAREST)
src_img += IMG_MEAN
tar_img += IMG_MEAN
src_img = cv2.cvtColor(src_img, cv2.COLOR_BGR2RGB)
tar_img = cv2.cvtColor(tar_img, cv2.COLOR_BGR2RGB)
src_lbl = src_lbls.data.cpu().numpy()[0] if src_lbls is not None else fake_lbl
tar_lbl = tar_lbls.data.cpu().numpy()[0] if tar_lbls is not None else fake_lbl
# todo rewriting your vl2im function
src_lbl = vl2im(src_lbl)
tar_lbl = vl2im(tar_lbl)
src_img_seg_pred = src_img_seg_lbl.data.cpu().numpy()[0].argmax(axis=0)
src_img_seg_pred = vl2im(src_img_seg_pred)
tar_img_seg_pred = tar_img_seg_lbl.data.cpu().numpy()[0].argmax(axis=0)
tar_img_seg_pred = vl2im(tar_img_seg_pred)
src_img_mat_pred = src_img_mat_lbl.data.cpu().numpy()[0].argmax(axis=0)
src_img_mat_pred = vl2im(src_img_mat_pred)
tar_img_mat_pred = tar_img_mat_lbl.data.cpu().numpy()[0].argmax(axis=0)
tar_img_mat_pred = vl2im(tar_img_mat_pred)
new_im = Image.new('RGB', (msk_size * 4, msk_size * 2))
new_im.paste(Image.fromarray(src_img.astype('uint8'), 'RGB'), (0, 0))
new_im.paste(Image.fromarray(src_lbl.astype('uint8'), 'RGB'), (msk_size, 0))
new_im.paste(Image.fromarray(src_img_seg_pred.astype('uint8'), 'RGB'), (msk_size * 2, 0))
new_im.paste(Image.fromarray(src_img_mat_pred.astype('uint8'), 'RGB'), (msk_size * 3, 0))
new_im.paste(Image.fromarray(tar_img.astype('uint8'), 'RGB'), (0, msk_size))
new_im.paste(Image.fromarray(tar_lbl.astype('uint8'), 'RGB'), (msk_size, msk_size))
new_im.paste(Image.fromarray(tar_img_seg_pred.astype('uint8'), 'RGB'), (msk_size * 2, msk_size))
new_im.paste(Image.fromarray(tar_img_mat_pred.astype('uint8'), 'RGB'), (msk_size * 3, msk_size))
new_im_name = 'B' + format(args.batch_size, "04d") + '_S' + format(actual_step, "06d") \
+ '_' + src_name[0][:-4] + '_to_' + tar_name[0][-8:]
new_im_file = os.path.join(args.img_dir, new_im_name)
new_im.save(new_im_file)
if actual_step % args.save_pred_every == 0 and cnt != 0:
print('taking snapshot ...')
torch.save({'example': actual_step * args.batch_size,
'state_dict': model.state_dict()},
osp.join(args.snapshot_dir,
'B' + format(args.batch_size, "04d") + '_S' + format(actual_step, "06d") + '.pth'))
if actual_step >= args.final_step:
break
cnt += 1
print('save the final model ...')
torch.save({'example': actual_step * args.batch_size,
'state_dict': model.state_dict()},
osp.join(args.snapshot_dir,
'B' + format(args.batch_size, "04d") + '_S' + format(actual_step, "06d") + '.pth'))
end = timeit.default_timer()
print(end - start, 'seconds')
def _pixel_accuracy(pred, target):
accuracy_sum = 0.0
for i in range(0, pred.shape[0]):
out = pred[i].argmax(axis=0)
accuracy = np.sum(out == target[i], dtype=np.float32) / out.size
accuracy_sum += accuracy
return accuracy_sum / pred.shape[0]
def _infant_accuracy(pred, target):
accuracy_sum = 0.0
cnt = 0
for i in range(0, pred.shape[0]):
out = pred[i].argmax(axis=0)
tar = target[i]
# delete normal pixels
out = out[tar != 0]
tar = tar[tar != 0]
if len(out) == 0 or len(tar) == 0:
accuracy = 0.0
else:
accuracy = np.sum(out == tar, dtype=np.float32) / out.size
accuracy_sum += accuracy
cnt += 1
if cnt == 0:
return 0.0
return accuracy_sum / cnt
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def _dist_infant_accuracy(pred, target):
accuracy_sum = 0.0
cnt = 0
for i in range(0, pred.shape[0]):
out = pred[i].argmax(axis=0)
tar = target[i].argmax(axis=0)
# delete normal pixels
out = out[tar != 0]
tar = tar[tar != 0]
if len(out) == 0 or len(tar) == 0:
accuracy = 0.0
else:
accuracy = np.sum(out == tar, dtype=np.float32) / out.size
accuracy_sum += accuracy
cnt += 1
if cnt == 0:
return 0.0
return accuracy_sum / cnt
def _dist_pixel_accuracy(pred, target):
accuracy_sum = 0.0
for i in range(0, pred.shape[0]):
out = pred[i].argmax(axis=0)
tar = target[i].argmax(axis=0)
accuracy = np.sum(out == tar, dtype=np.float32) / out.size
accuracy_sum += accuracy
return accuracy_sum / pred.shape[0]
if __name__ == '__main__':
main()