-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparse_output_c64.py
235 lines (166 loc) · 7.26 KB
/
parse_output_c64.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
input_offsets = []
filter_vals = []
filter_offsets = []
bias_data = []
output_multiplier = []
output_offset = []
right_shift = []
output_scale = []
output_zero_point = []
# Parse relevant values from TF output log.
for line in open("output.txt"):
line = line.strip()
if line.startswith("NAB FULLY CONNECTED EXEC FILTER VAL "):
filter_vals.append(line.replace("NAB FULLY CONNECTED EXEC FILTER VAL ", ""))
elif line.startswith("NAB FULLY CONNECTED EXEC FILTER OFFSET "):
filter_offsets.append(line.replace("NAB FULLY CONNECTED EXEC FILTER OFFSET ", ""))
elif line.startswith("NAB FULLY CONNECTED EXEC INPUT OFFSET "):
input_offsets.append(line.replace("NAB FULLY CONNECTED EXEC INPUT OFFSET ", ""))
elif line.startswith("NAB FULLY CONNECTED EXEC BIAS DATA "):
bias_data.append(line.replace("NAB FULLY CONNECTED EXEC BIAS DATA ", ""))
elif line.startswith("NAB FULLY CONNECTED OUTPUT MULTIPLIER "):
output_multiplier.append(line.replace("NAB FULLY CONNECTED OUTPUT MULTIPLIER ", ""))
elif line.startswith("NAB FULLY CONNECTED RIGHT SHIFT "):
right_shift.append(line.replace("NAB FULLY CONNECTED RIGHT SHIFT ", ""))
elif line.startswith("NAB FULLY CONNECTED EXEC OUTPUT OFFSET "):
output_offset.append(line.replace("NAB FULLY CONNECTED EXEC OUTPUT OFFSET ", ""))
elif line.startswith("NAB OUTPUT SCALE "):
output_scale.append(line.replace("NAB OUTPUT SCALE ", ""))
elif line.startswith("NAB OUTPUT ZERO POINT "):
output_zero_point.append(line.replace("NAB OUTPUT ZERO POINT ", ""))
# Generate code as a series of steps to represent the model.
x = 1
l1_input = int(x / 0.024574 - 128)
line_number = 10
print('{0} dim l1(16)'.format(line_number))
line_number += 10
print('{0} dim l2(16)'.format(line_number))
line_number += 10
print('{0} input "enter a number:"; a%'.format(line_number))
line_number += 10
print('{0} a% = int((a% / 0.024574 - 128)+0.5)'.format(line_number))
line_number += 10
l1_results = []
l2_results = []
# Layer 1
for i in range(16):
acc = (int(filter_vals[i]) + int(filter_offsets[i])) * (l1_input + int(input_offsets[i]))
acc += int(bias_data[i])
print('{0} acc = (({1} + {2}) * (a% + {3})) + {4}'.format(line_number, int(filter_vals[i]), int(filter_offsets[i]), int(input_offsets[i]), int(bias_data[i])))
line_number += 10
if acc > 0:
acc = (acc * int(output_multiplier[i]) + 2**30) / 2**31
else:
acc = (acc * int(output_multiplier[i]) + (1 - 2**30)) / 2**31
print('{0} if acc>0 then acc=(acc*{1} + 2^30) / 2^31'.format(line_number, int(output_multiplier[i])))
line_number += 10
print('{0} if acc<=0 then acc=(acc*{1} + (1-2^30)) / 2^31'.format(line_number, int(output_multiplier[i])))
line_number += 10
acc = int(int(acc) / 2**int(right_shift[i]))
acc += int(output_offset[i])
print('{0} acc = (int((acc)+0.5) / 2^{1}) + {2}'.format(line_number, int(right_shift[i]), int(output_offset[i])))
line_number += 10
print('{0} acc = int((acc)+0.5)'.format(line_number))
line_number += 10
if acc < -128:
acc = -128
elif acc > 127:
acc = 127
print('{0} if acc < -128 then acc = -128'.format(line_number))
line_number += 10
print('{0} if acc > 127 then acc = 127'.format(line_number))
line_number += 10
l1_results.append(acc)
print('{0} l1({1}) = acc'.format(line_number, i+1))
line_number += 10
# print('{0} for i=1 to 16'.format(line_number))
# line_number += 10
# print('{0} print l1(i)'.format(line_number))
# line_number += 10
# print('{0} next i'.format(line_number))
# line_number += 10
# Layer 2
for node in range(16):
acc = 0
print('{0} acc = 0'.format(line_number))
line_number += 10
for l1 in range(16):
offset = 16 + (node*16) + l1
acc += (int(filter_vals[offset]) + int(filter_offsets[offset])) * (l1_results[l1] + int(input_offsets[offset]))
print('{0} acc = acc + (({1} + {2}) * (l1({3}) + {4}))'.format(line_number, int(filter_vals[offset]), int(filter_offsets[offset]), l1+1, int(input_offsets[offset]) ))
line_number += 10
acc += int(bias_data[node+16])
print('{0} acc = acc + {1}'.format(line_number, int(bias_data[node+16])))
line_number += 10
if acc > 0:
acc = (acc * int(output_multiplier[node+16]) + 2**30) / 2**31
else:
acc = (acc * int(output_multiplier[node+16]) + (1 - 2**30)) / 2**31
print('{0} if acc>0 then acc=(acc*{1} + 2^30) / 2^31'.format(line_number, int(output_multiplier[node+16])))
line_number += 10
print('{0} if acc<=0 then acc=(acc*{1} + (1-2^30)) / 2^31'.format(line_number, int(output_multiplier[node+16])))
line_number += 10
acc = int(int(acc) / 2**int(right_shift[node+16]))
acc += int(output_offset[node+16])
print('{0} acc = (int((acc)+0.5) / 2^{1}) + {2}'.format(line_number, int(right_shift[node+16]), int(output_offset[node+16])))
line_number += 10
print('{0} acc = int((acc)+0.5)'.format(line_number))
line_number += 10
if acc < -128:
acc = -128
elif acc > 127:
acc = 127
print('{0} if acc < -128 then acc = -128'.format(line_number))
line_number += 10
print('{0} if acc > 127 then acc = 127'.format(line_number))
line_number += 10
l2_results.append(acc)
print('{0} l2({1}) = acc'.format(line_number, node+1))
line_number += 10
# print('{0} for i=1 to 16'.format(line_number))
# line_number += 10
# print('{0} print l2(i)'.format(line_number))
# line_number += 10
# print('{0} next i'.format(line_number))
# line_number += 10
# Layer 3
acc = 0
print('{0} acc = 0'.format(line_number))
line_number += 10
for l2 in range(16):
offset = 16 + (16*16) + l2
acc += (int(filter_vals[offset]) + int(filter_offsets[offset])) * (l2_results[l2] + int(input_offsets[offset]))
print('{0} acc = acc + (({1} + {2}) * (l2({3}) + {4}))'.format(line_number, int(filter_vals[offset]), int(filter_offsets[offset]), l2+1, int(input_offsets[offset]) ))
line_number += 10
acc += int(bias_data[32])
print('{0} acc = acc + {1}'.format(line_number, int(bias_data[32])))
line_number += 10
if acc > 0:
acc = (acc * int(output_multiplier[32]) + 2**30) / 2**31
else:
acc = (acc * int(output_multiplier[32]) + (1 - 2**30)) / 2**31
print('{0} if acc>0 then acc=(acc*{1} + 2^30) / 2^31'.format(line_number, int(output_multiplier[32])))
line_number += 10
print('{0} if acc<=0 then acc=(acc*{1} + (1-2^30)) / 2^31'.format(line_number, int(output_multiplier[32])))
line_number += 10
acc = int(int(acc) / 2**int(right_shift[32]))
acc += int(output_offset[32])
print('{0} acc = (int((acc)+0.5) / 2^{1}) + {2}'.format(line_number, int(right_shift[32]), int(output_offset[32])))
line_number += 10
print('{0} acc = int((acc)+0.5)'.format(line_number))
line_number += 10
if acc < -128:
acc = -128
elif acc > 127:
acc = 127
print('{0} if acc < -128 then acc = -128'.format(line_number))
line_number += 10
print('{0} if acc > 127 then acc = 127'.format(line_number))
line_number += 10
print('{0} result = (acc - {1}) * {2}'.format(line_number, int(output_zero_point[0]), float(output_scale[0])))
line_number += 10
print('{0} print result'.format(line_number))
line_number += 10
print(l1_results)
print(l2_results)
print((acc - int(output_zero_point[0])) * float(output_scale[0]))