-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcmat.h
832 lines (650 loc) · 16.3 KB
/
cmat.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
// Template Numerical Toolkit (TNT) for Linear Algebra
//
// BETA VERSION INCOMPLETE AND SUBJECT TO CHANGE
// Please see http://math.nist.gov/tnt for updates
//
// R. Pozo
// Mathematical and Computational Sciences Division
// National Institute of Standards and Technology
// Modified 6/2003 to make it work with new compilers.
// P.L. (Anne) Shepherd
// ***********************************************************
// ****IMPORTANT NOTE:
// I have modified this code so the overloaded reference
// operator () has C-type 0-based indexing. This is
// a CHANGE from the original, which uses Fortran-type
// 1-based indexing. Any program that calls the operator
// in this version of cmat.h expecting 1-based indexing,
// or uses an old version of cmat.h and expects 0-based
// indexing, will get BAD RESULTS. Please BE SURE
// you know which version of cmat.h you are using and
// which one you need to be using.
// ----Anne Shepherd, 6/17/03 ********************
// ***********************************************************
// C compatible matrix: row-oriented, 0-based [i][j] and 1-based (i,j) indexing
//
// Chris Siefert's modified namespace free version - 5/26/99
// function (row) has been added.
// It returns the vector that contains that row.
// function (col) has been added.
// It returns the vector that contains that column.
// Also, support for multiplication by a scalar has been added.
// Support for Vector * Matrix acting as if the vector was a row
// vector is added.
//Since Mr. Pozo never did it, here is the complete catalog of outside
//accessable Matrix operations:
//
// Matrix<T>& newsize(Subscript M, Subscript N) - resize matrix
// operator T**(){ return row_;} - ???
// Subscript size() const { return mn_; }
// operator = Matrix
// operator = scalar - assigns all elements to the scalar.
// Subscript dim(Subscript d)
// num_rows()
// num_cols()
// operator[](Subscript i)
// operator()(Subscript i)
// operator()(Subscript i, Subscript j)
// ostream << Matrix
// istream >> Matrix
// Region operator()(const Index1D &I, const Index1D &J) - ???
// Matrix + Matrix
// Matrix - Matrix
// mult_element(A,B) - element by element multiplication
// transpose(A) - matrix transposition
// Matrix * Matrix (also matmult)
// matmult(C, B, A) - result stored in C
// Matrix * Vector (also matmult)
// Chris Siefert Additions:
// row(i) - returns a Vector containing the ith row.
// col(i) - returns a Vector containing the ith column.
// Matrix * Scalar, Scalar * Matrix (also scalmult, 1st form only).
// Vector * Matrix (also matmult). Pretends vector is a row vector.
//
// Modified 7/00 by Anne Shepherd to allow for different implementations
// of the operators new and new[]. If your compiler does not support the
// ANSI Standard try-catch syntax, compile with -DDOLD_ALLOC flag or just
// #define DOLD_ALLOC in your file before including our files.
#ifndef CMAT_H
#define CMAT_H
#ifndef DOLD_ALLOC
#include <new>
#endif
#include "vec.h"
#include <cstdlib>
#include <cassert>
#include <iostream>
#ifdef TNT_USE_REGIONS
#include "region2d.h"
#endif
#include <iomanip>
#define D_PRECISION 16
typedef int Subscript;
template <class T>
class Matrix
{
public:
typedef Subscript size_type;
typedef T value_type;
typedef T element_type;
typedef T* pointer;
typedef T* iterator;
typedef T& reference;
typedef const T* const_iterator;
typedef const T& const_reference;
Subscript lbound() const { return 1; }
protected:
Subscript m_;
Subscript n_;
Subscript mn_; // total size
T* v_;
T** row_;
T* vm1_; // these point to the same data, but are 1-based
T** rowm1_;
// internal helper function to create the array
// of row pointers
void initialize(Subscript M, Subscript N)
{
mn_ = M * N;
m_ = M;
n_ = N;
#ifdef DOLD_ALLOC
v_ = new T[mn_];
row_ = new T*[M];
rowm1_ = new T*[M];
assert(v_ != NULL);
assert(row_ != NULL);
assert(rowm1_ != NULL);
#else
try {
v_ = new T[mn_];
} //try
catch (bad_alloc exception) {
cerr << "Memory allocation failed in file cmat.h, method initialize()."
<< "Exiting with value 1.\n";
exit(1);
} //catch
try {
row_ = new T*[M];
} //try
catch (bad_alloc exception) {
cerr << "Memory allocation failed in file cmat.h, method initialize()."
<< "Exiting with value 1.\n";
exit(1);
} //catch
try {
rowm1_ = new T*[M];
} //try
catch (bad_alloc exception) {
cerr << "Memory allocation failed in file cmat.h, method initialize()."
<< "Exiting with value 1.\n";
exit(1);
} //catch
#endif
T* p = v_;
vm1_ = v_ - 1;
for (Subscript i = 0; i < M; i++)
{
row_[i] = p;
rowm1_[i] = p - 1;
p += N;
}
rowm1_--; // compensate for 1-based offset
}
void copy(const T* v)
{
Subscript N = m_ * n_;
Subscript i;
#ifdef TNT_UNROLL_LOOPS
Subscript Nmod4 = N & 3;
Subscript N4 = N - Nmod4;
for (i = 0; i < N4; i += 4)
{
v_[i] = v[i];
v_[i + 1] = v[i + 1];
v_[i + 2] = v[i + 2];
v_[i + 3] = v[i + 3];
}
for (i = N4; i < N; i++)
v_[i] = v[i];
#else
for (i = 0; i < N; i++)
v_[i] = v[i];
#endif
}
void set(const T& val)
{
Subscript N = m_ * n_;
Subscript i;
#ifdef TNT_UNROLL_LOOPS
Subscript Nmod4 = N & 3;
Subscript N4 = N - Nmod4;
for (i = 0; i < N4; i += 4)
{
v_[i] = val;
v_[i + 1] = val;
v_[i + 2] = val;
v_[i + 3] = val;
}
for (i = N4; i < N; i++)
v_[i] = val;
#else
for (i = 0; i < N; i++)
v_[i] = val;
#endif
}
void destroy()
{
/* do nothing, if no memory has been previously allocated */
if (v_ == NULL) return;
/* if we are here, then matrix was previously allocated */
if (v_ != NULL) delete[](v_);
if (row_ != NULL) delete[](row_);
/* return rowm1_ back to original value */
rowm1_++;
if (rowm1_ != NULL) delete[](rowm1_);
}
public:
operator T**() { return row_; }
operator T**() const { return row_; }
Subscript size() const { return mn_; }
void setRow(int r, int c, double value)
{
Subscript i, j;
i = r;
j = c;
row_[i][j] = value;
}
void Zeros()
{
int M = num_rows();
int N = num_cols();
Subscript i, j;
for (i = 0; i<M; i++)
for (j = 0; j<N; j++)
row_[i][j] = 0.0;
}
void Ones()
{
int M = num_rows();
int N = num_cols();
Subscript i, j;
for (i = 0; i<M; i++)
for (j = 0; j<N; j++)
row_[i][j] = 1.0;
}
// constructors
Matrix() : m_(0), n_(0), mn_(0), v_(0), row_(0), vm1_(0), rowm1_(0) {};
Matrix(const Matrix<T> &A)
{
initialize(A.m_, A.n_);
copy(A.v_);
}
Matrix(Subscript M, Subscript N, const T& value = T(0))
{
initialize(M,N);
set(value);
}
Matrix(Subscript M, Subscript N, const T* v)
{
initialize(M,N);
copy(v);
}
Matrix(Subscript M, Subscript N, char *s)
{
initialize(M,N);
istringstream ins(s);
Subscript i, j;
for (i=0; i<M; i++)
for (j=0; j<N; j++)
ins >> row_[i][j];
}
// destructor
//
~Matrix()
{
destroy();
}
// reallocating
//
Matrix<T>& newsize(Subscript M, Subscript N)
{
if (num_rows() == M && num_cols() == N)
return *this;
destroy();
initialize(M,N);
return *this;
}
// assignments
//
Matrix<T>& operator=(const Matrix<T> &A)
{
if (v_ == A.v_)
return *this;
if (m_ == A.m_ && n_ == A.n_) // no need to re-alloc
copy(A.v_);
else
{
destroy();
initialize(A.m_, A.n_);
copy(A.v_);
}
return *this;
}
Matrix<T>& operator=(const T& scalar)
{
set(scalar);
return *this;
}
std::vector<T> slice(int i)
{
Vector<T>temp(n_, row_[i]);
std::vector<T> vec(temp.begin(), temp.end());
return vec;
}
Subscript dim(Subscript d) const
{
#ifdef TNT_BOUNDS_CHECK
assert( d >= 1);
assert( d <= 2);
#endif
return (d==1) ? m_ : ((d==2) ? n_ : 0);
}
Subscript num_rows() const { return m_; }
Subscript num_cols() const { return n_; }
inline T* operator[](Subscript i)
{
#ifdef TNT_BOUNDS_CHECK
assert(0<=i);
assert(i < m_) ;
#endif
return row_[i];
}
/*START - cmsief************************/
/*This is a Chris Siefert original that attempts to return a vector*/
inline Vector<T> row (Subscript i) const
{
#ifdef TNT_BOUNDS_CHECK
assert(0<=i);
assert(i < m_) ;
#endif
Vector<T>temp(n_,row_[i]);
return (temp);
}
inline Vector<T> col (Subscript i) const
{
#ifdef TNT_BOUNDS_CHECK
assert(0<=i);
assert(i < n_) ;
#endif
Vector<T>temp(m_);
for(long f=0;f<m_;f++) temp[f]=row_[f][i];
return (temp);
}
/*END - cmsief************************/
inline const T* operator[](Subscript i) const
{
#ifdef TNT_BOUNDS_CHECK
assert(0<=i);
assert(i < m_) ;
#endif
return row_[i];
}
/* Changed all this from being 1-based to good ol' C-type
* 0-based indexing.
* pls, 5/15/03
*/
// this is for a sanity check later---using an old version of this
// file will result in off-by-1 errors and give incorrect results.
#define _changed_f_indexing_to_c_pls
inline reference operator()(Subscript i)
{
#ifdef TNT_BOUNDS_CHECK
assert(1<=i);
assert(i <= mn_) ;
#endif
//return vm1_[i];
return v_[i];
}
inline const_reference operator()(Subscript i) const
{
#ifdef TNT_BOUNDS_CHECK
assert(1<=i);
assert(i <= mn_) ;
#endif
//return vm1_[i];
return v_[i];
}
inline reference operator()(Subscript i, Subscript j)
{
#ifdef TNT_BOUNDS_CHECK
assert(1<=i);
assert(i <= m_) ;
assert(1<=j);
assert(j <= n_);
#endif
//return rowm1_[i][j];
return row_[i][j];
}
inline const_reference operator() (Subscript i, Subscript j) const
{
#ifdef TNT_BOUNDS_CHECK
assert(1<=i);
assert(i <= m_) ;
assert(1<=j);
assert(j <= n_);
#endif
//return rowm1_[i][j];
return row_[i][j];
}
/* end P.L. Shepherd hacks to C-ize the () operators */
#ifdef OLD_LIBC
friend istream & operator>>(istream &s, Matrix<T> &A);
#else
// template<class T>
friend istream & operator>><>(istream &s, Matrix<T> &A);
#endif
// friend std::istream & operator>>(std::istream &s, Matrix<T> &A);
#ifdef TNT_USE_REGIONS
typedef Region2D<Matrix<T> > Region;
Region operator()(const Index1D &I, const Index1D &J)
{
return Region(*this, I,J);
}
typedef const_Region2D< Matrix<T> > const_Region;
const_Region operator()(const Index1D &I, const Index1D &J) const
{
return const_Region(*this, I,J);
}
#endif
};
/* *************************** I/O ********************************/
//std::ostream& operator<<(std::ostream &s, const Matrix<T> &A)
template <class T>
ostream& operator<<(ostream &s, const Matrix<T> &A)
{
Subscript M=A.num_rows();
Subscript N=A.num_cols();
s << M << " " << N << "\n";
for (Subscript i=0; i<M; i++)
{
for (Subscript j=0; j<N; j++)
{
s <<setprecision(D_PRECISION)<< A[i][j] << " ";
}
s << "\n";
}
return s;
}
//std::istream& operator>>(std::istream &s, Matrix<T> &A)
template <class T>
istream& operator>>(istream &s, Matrix<T> &A)
{
Subscript M, N;
s >> M >> N;
if ( !(M == A.m_ && N == A.n_) )
{
A.destroy();
A.initialize(M,N);
}
for (Subscript i=0; i<M; i++)
for (Subscript j=0; j<N; j++)
{
s >> A[i][j];
}
return s;
}
// *******************[ basic matrix algorithms ]***************************
template <class T>
Matrix<T> operator+(const Matrix<T> &A,
const Matrix<T> &B)
{
Subscript M = A.num_rows();
Subscript N = A.num_cols();
assert(M==B.num_rows());
assert(N==B.num_cols());
Matrix<T> tmp(M,N);
Subscript i,j;
for (i=0; i<M; i++)
for (j=0; j<N; j++)
tmp[i][j] = A[i][j] + B[i][j];
return tmp;
}
template <class T>
Matrix<T> operator-(const Matrix<T> &A,
const Matrix<T> &B)
{
Subscript M = A.num_rows();
Subscript N = A.num_cols();
assert(M==B.num_rows());
assert(N==B.num_cols());
Matrix<T> tmp(M,N);
Subscript i,j;
for (i=0; i<M; i++)
for (j=0; j<N; j++)
tmp[i][j] = A[i][j] - B[i][j];
return tmp;
}
template <class T>
Matrix<T> mult_element(const Matrix<T> &A,
const Matrix<T> &B)
{
Subscript M = A.num_rows();
Subscript N = A.num_cols();
assert(M==B.num_rows());
assert(N==B.num_cols());
Matrix<T> tmp(M,N);
Subscript i,j;
for (i=0; i<M; i++)
for (j=0; j<N; j++)
tmp[i][j] = A[i][j] * B[i][j];
return tmp;
}
template <class T>
Matrix<T> transpose(const Matrix<T> &A)
{
Subscript M = A.num_rows();
Subscript N = A.num_cols();
Matrix<T> S(N,M);
Subscript i, j;
for (i=0; i<M; i++)
for (j=0; j<N; j++)
S[j][i] = A[i][j];
return S;
}
template <class T>
inline Matrix<T> matmult(const Matrix<T> &A,
const Matrix<T> &B)
{
#ifdef TNT_BOUNDS_CHECK
assert(A.num_cols() == B.num_rows());
#endif
Subscript M = A.num_rows();
Subscript N = A.num_cols();
Subscript K = B.num_cols();
Matrix<T> tmp(M,K);
T sum;
for (Subscript i=0; i<M; i++)
for (Subscript k=0; k<K; k++)
{
sum = 0;
for (Subscript j=0; j<N; j++)
sum = sum + A[i][j] * B[j][k];
tmp[i][k] = sum;
}
return tmp;
}
template <class T>
inline Matrix<T> operator*(const Matrix<T> &A,
const Matrix<T> &B)
{
return matmult(A,B);
}
/*More Chris Siefert additions*/
template <class T>
inline Matrix<T> scalmult(const Matrix<T> &A,
const T &x)
{
Matrix<T> tmp=A;
Subscript M = A.num_rows();
Subscript N = A.num_cols();
for(Subscript i=0;i<M;i++)
for(Subscript j=0;j<N;j++)
tmp[i][j]*=x;
return tmp;
}
template <class T>
inline Matrix<T> operator*(const Matrix<T> &A,
const T &x)
{
return scalmult(A,x);
}
template <class T>
inline Matrix<T> operator*(const T &x,
const Matrix<T> &A)
{
return scalmult(A,x);
}
template <class T>
Vector<T> matmult(const Vector<T> &x, const Matrix<T> &A) {
/*pretends that x is a row-vector*/
#ifdef TNT_BOUNDS_CHECK
assert(A.num_rows() == x.dim());
#endif
Subscript M = A.num_rows();
Subscript N = A.num_cols();
Vector<T> tmp(N);
T sum;
for (Subscript i=0; i<N; i++)
{
sum = 0;
// Vector<T> coli=A.col(i);
for (Subscript j=0; j<M; j++)
sum = sum + A[j][i] * x[j];
tmp[i] = sum;
}
return tmp;
}/*end matmult*/
template <class T>
inline Vector<T> operator*(const Vector<T> &x,
const Matrix<T> &A)
{
return matmult(x,A);
}
/*end Chris Siefert additions*/
template <class T>
inline int matmult(Matrix<T>& C, const Matrix<T> &A,
const Matrix<T> &B)
{
assert(A.num_cols() == B.num_rows());
Subscript M = A.num_rows();
Subscript N = A.num_cols();
Subscript K = B.num_cols();
C.newsize(M,K);
T sum;
const T* row_i;
const T* col_k;
for (Subscript i=0; i<M; i++)
for (Subscript k=0; k<K; k++)
{
row_i = &(A[i][0]);
col_k = &(B[0][k]);
sum = 0;
for (Subscript j=0; j<N; j++)
{
sum += *row_i * *col_k;
row_i++;
col_k += K;
}
C[i][k] = sum;
}
return 0;
}
template <class T>
Vector<T> matmult(const Matrix<T> &A, const Vector<T> &x)
{
#ifdef TNT_BOUNDS_CHECK
assert(A.num_cols() == x.dim());
#endif
Subscript M = A.num_rows();
Subscript N = A.num_cols();
Vector<T> tmp(M);
T sum;
for (Subscript i=0; i<M; i++)
{
sum = 0;
const T* rowi = A[i];
for (Subscript j=0; j<N; j++)
sum = sum + rowi[j] * x[j];
tmp[i] = sum;
}
return tmp;
}
template <class T>
inline Vector<T> operator*(const Matrix<T> &A, const Vector<T> &x)
{
return matmult(A,x);
}
//} // namespace TNT
#endif
// CMAT_H