-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathCNealderMead.h
358 lines (309 loc) · 11.9 KB
/
CNealderMead.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
/*
In the spreadsheet, both the original method proposed by Hagan et. al. 2002
and the fine tuned correction proposed by Obloj 2008 are implemented.
constrained Nelder-Mead Simplex method
*/
#pragma once
#include <string>
#include <math.h>
#include <algorithm>
#include <vector>
#include <array>
#include <type_traits>
#include "CConstraints.h"
#include "MSABR.h"
#include "02.vb.h"
static int IDD = 0;
class Apex
{
public:
Apex() : type(""), id(IDD++) {}
std::vector<double> x;
double f;
std::string type;
int id;
};
class CNelderMead
{
private:
const double alpha = 1; // reflection
const double gamma = 2; // expansion
const double rho = 0.5; // contraction
const double sigma = 0.5; // shrinkage
const long MAXITER = 1000; // maximal # of iterations
const double XTOL = 0.00001; //simplex size convergence
const double FTOL = 0.0000000001; //function value convergence
const double eps = 1e-20; //function value convergence
Constraints constraint;
std::string functionname;
double previousfunctionvalue;
double sse = 0;
public:
// SolveMinimum calls CalculateNewApexToReplaceWorstApex or calls GetInitialSimplex
// which then calls void ApexEvaluate(Apex* a) which cals RunFunction.
// ApexEvaluate is only function that calls RunFunction.
double RunFunction(std::vector<double>& params)
{
if (functionname == "")
return pow(params[0] - 4, 2) + pow(params[1] - 2.7, 4) * sin(params[1] - 2) + pow(params[2] - 6.7, 4)* cos(params[2] - 6.7);
else
//SolveMinimum(x) gets parameters then passes them to MyFunction.
sse = MyFunction(params);
return sse;
}
CNelderMead():functionname(""), previousfunctionvalue(0)
{ }
void SetFunctionName(std::string function_name)
{
functionname = function_name;
}
void AddSingleConstraint(long index,std::string dir,double bound)
{
long coef;
coef = 1;
constraint.AddConstraint(index, coef, dir, bound);
}
void AddSumConstraint(std::vector<double> index,std::vector<double> coef,std::string dir,
double bound)
{
for (int i = 0; i < index.size(); ++i)
constraint.AddConstraint(index[i], coef[i], dir, bound);
}
//------------------------------------------------------------------------------
// Nelder-Mead method loops as follows:
//
// order ascendingly the n apexes by function value (n = dimension + 1, smallest f(x) ==> best)
// check convergence (must be under TOL=>diff between best value and others, both for function and parameters)
// calculate xo (i.e. the centroid of the apexes excluding the worst apex)
// reflextion: xr = xo + alpha * (xo - xn)
// if xr better than x1 then do "expansion":
// xe = xo + gamma * (xr - xo)
// if f(xe) < f(xr) then xe --> xn otherwise xr --> xn
// elseif xr better than x(n-1) then do "reflection":
// xr --> xn
// elseif xr better than xn then do "outside contraction":
// xoc = xo + rho * (xr - xo)
// if f(xoc) < f(xr) then xoc --> xn
// else do "shrinkage": compute xi = x1 + sigma * (xi - x1) for i = 2 to n
// else do "inside contraction":
// xic = xo - rho * (xr - xo) <==> xic = xo + rho * (xn - xo) if alpha = 1 and rho = 1/2
// if f(xic) < f(xn) then xic --> xn
// else do "shrinkage": compute xi = x1 + sigma * (xi - x1) for i = 2 to n
// end if
// ------------------------------------------------------------------------------
//
// alpha > 0; gamma > 1; 0 < rho, sigma < 1
// alpha = 1; gamma = 2; rho = sigma = 1/2
//------------------------------------------------------------------------------
std::vector<double> SolveMinimum(std::vector<double>& pv)
{
int n = (int)pv.size() + 1 ;
//std::cout << "called SolveMinimum " << std::endl;
std::vector<Apex*> simplex = GetInitialSimplex(pv);
for (long iter = 0; iter < MAXITER; ++iter)
{
//std::cout << "New iteration \t" << iter << std::endl;
SortSimplex(simplex); // ' step (1) sorting
if (CheckConvergence(simplex) == true) // step (2) convergence check
{
//return simplex[0]->x; // return the 1st apex (i.e. optimal, best)
//do cleanup for next SolveMinimum...
std::vector<double> vv(simplex[0]->x);
for (int i = 0; i < simplex.size(); ++i)
delete simplex[i];
simplex.empty();
return vv;
}
Apex* xo = GetCentroidExcludingWorstApex(simplex); // step (3) obtaining xo
xo->type = "c";
// step (4) reflection: reflect the worst to go farthest away from it
Apex* xr = CalculateNewApexToReplaceWorstApex(xo, simplex[n-1], alpha); // xr = xo - alpha * (xo - simplex[n-1])
xr->type = "r";
if (xr->f < simplex[0]->f) // xr is better than x1 (i.e. better than the best)
{
// expansion: xr better than x1, so go more and expand in this direction
Apex* xe = CalculateNewApexToReplaceWorstApex(xo, xr, -gamma); // xe = xo + -1* gamma * (xo - xr)
xe->type = "e";
if (xe->f < xr->f) simplex[n-1] = xe; else simplex[n-1] = xr;
}
else if (xr->f < simplex[n - 2]->f) // xr is better than 2nd worst
{
// reflection:
simplex[n-1] = xr; // good in moving towards this direction
}
else if (xr->f < simplex[n-1]->f) // xr is better than the worst
{
// outside contraction:
Apex* xoc = CalculateNewApexToReplaceWorstApex(xo, xr, -rho); // xoc = xo + rho * (xo - xr)
xoc->type = "xoc";
if (xoc->f < xr->f) simplex[n-1] = xoc; else Shrink(simplex);
}
else // xr is NOT better than any apex
{
// inside contraction:
Apex* xic = CalculateNewApexToReplaceWorstApex(xo, xr, rho); // xic = xo - rho * (xr - xo)
xic->type = "xic";
// Dim xic As Apex: xic = CalculateNewApexToReplaceWorstApex(xo, simplex(n), -rho) ' xic = xo - rho * (xo - xn)
if (xic->f < simplex[n-1]->f) simplex[n-1] = xic; else Shrink(simplex);
}
}
std::string msg("iterations did not converge");
std::cout << msg << std::endl;
}
void Shrink(std::vector<Apex*>& simplex)
{
// the shrink transformations almost never happens in practice
long size = (long) simplex.size();
for (long i = 0; i < size; ++i) // xi = x1 + sigma * (xi - x1) for i = 2 to n
simplex[i] = CalculateNewApexToReplaceWorstApex(simplex[i], simplex[i], -sigma);
}
std::vector<Apex*> GetInitialSimplex(std::vector<double>& pv)
{
// An n dimensional search would have a simplex
//with n + 1 vertices.This is because a one
//dimensional search space would need two
//vertices to cover a range, and each additional
//dimension would need one more vertex to cover it.
double shift = 0;
int n = (int)pv.size() +1;
std::vector<Apex*> simplex;
for (int i = 0; i < n; ++i)
simplex.push_back(new Apex());
//set first row vector simply to initial parameters
simplex[0]->x = pv;
ApexEvaluate(simplex[0]);
// for (int i = 0; i < n - 1; ++i)
// std::cout << "GetInitialSimplex #1 " << i << " \t" << simplex[0]->x[i] << std::endl;
//calculate shifting factor by taking hightest value of coordinates of initial guess
//shift = max entry of initial guess, if shift < 1 then shift = 1
shift = Max(1, MaxVec(pv));
double factor = 0;
long count = 0;
for (long i = 1; i < n; ++i) //loop over remaining row vectors (i.e. apexes)
{
simplex[i]->x = pv;
factor = 1;
do { // new apex by shifting the coordinates of initial guess
// if out of boundary then shrinks apex to x1
simplex[i]->x[i - 1] = pv[i - 1] + shift * factor;
// std::cout << "GetInitialSimplex #2 " << i << " \t" << " pv[i - 1] " << pv[i - 1] << " shift*factor " << shift*factor << "\t" << simplex[i]->x[i - 1] << std::endl;
factor = factor / 2;
// std::cout << "InitialSimplex loop: " << count++ << std::endl;
} while (constraint.CalculatePenalty(simplex[i]->x) > eps);
// hack for row number
// simplex[i]->x[3] = simplex[0]->x[3];
ApexEvaluate(simplex[i]);
}
return simplex;
}
bool CheckConvergence(std::vector< Apex*>& simplex)
{
long n = (long)simplex.size();
double xdiff = 0;// xdiff = inf-norm between other apexes and x1
double fdiff = 0;
for (long i = 1; i < n; ++i) // loop over apexes except the 1st
for (long j = 0; j < n - 1; ++j) // loop over coordinates of an apex
xdiff = Max(xdiff, abs(simplex[i]->x[j] - simplex[0]->x[j]));
xdiff = xdiff / Max(1, MaxVec(simplex[0]->x)); //normalized by inf-norm of x1
fdiff = abs(simplex[n-1]->f - simplex[0]->f) / Max(1, abs(simplex[0]->f));
if (xdiff < XTOL || fdiff < FTOL)
return true;
return false;
}
// sample mean. Some literature say calculate mean.
Apex* GetCentroidExcludingWorstApex(std::vector<Apex*>& simplex)
{
// calculate the centroid of the apexes excluding the worst apex
int n = (long)simplex.size();
Apex* centroid = new Apex();
//centroid->x.resize(n);
for (int i = 0; i < n-1; ++i) //loop over coordinates
{
double sum = 0;
for (long j = 0; j < n - 1; ++j) { //loop over apexes except for the last (i.e. worst)
// std::cout << "getcentroid #1 apex: " << simplex[j]->id << " simplex# j "<< j << " pv x " << i << "\tstart sum " << sum << "\tsimplex[j]->x[i] " << simplex[j]->x[i] << std::endl;
sum = sum + simplex[j]->x[i];
// std::cout << "getcentroid #2 apex: " << simplex[j]->id << " simplex# j " << j << " pv x " << i << "\tnext sum " << sum << "\tsimplex[j]->x[i] " << simplex[j]->x[i] << std::endl;
}
centroid->x.push_back(sum / (n - 1));
// std::cout << "getcentroid #3 " << i << "\tend sum " << sum << " avg " << sum/ (n - 1) << std::endl;
}
// ApexEvaluate centroid ' evaluate function value at centroid
return centroid;
}
void ApexEvaluate(Apex* a)
{
double penalty = constraint.CalculatePenalty(a->x);
if (penalty == 0) //no boundary breaches
previousfunctionvalue = RunFunction(a->x);
a->f = previousfunctionvalue + penalty;
}
Apex* CalculateNewApexToReplaceWorstApex( Apex*a,Apex* b,double c)
{
// xnew = a + c * (a - b)
int size = (long)a->x.size();
Apex* xnew = new Apex();
for (int i = 0; i < size; ++i) {
// std::cout << ":CalculateNewApexToReplaceWorstApex 1 Apex: " << xnew->id << "\t" << i << "\ta->x[i] + c * (a->x[i] - b->x[i])\t" << a->type << "\t" << b->type << "\t" << " coef " << c << "\t" << "a->x[i] " << a->x[i] << " b->x[i] " << b->x[i] << std::endl;
double DD = a->x[i] + c * (a->x[i] - b->x[i]);
// std::cout << ":CalculateNewApexToReplaceWorstApex 1 Apex: " << xnew->id << "\t" << i << "\ta->x[i] + c * (a->x[i] - b->x[i])\t" << a->type << "\t" << b->type << "\t" << " coef " << c << "\t" << DD << "a->x[i] " << a->x[i] << " b->x[i] " << b->x[i] << std::endl;
xnew->x.push_back(DD);
}
ApexEvaluate(xnew);
return xnew;
}
void printSimplex(std::vector<Apex*>& simplex)
{
long size = (long)simplex.size();
long sizex = (long)simplex[0]->x.size();
for (long i = 0; i < size; ++i) // for each apex upto the 2nd last
{
// std::cout << i << "f\t" << simplex[i]->f << "\t" << std::endl;
for (long j = 0; j < sizex; ++j)
{
// std::cout << j << "\t" << simplex[i]->x[j] << std::endl;
}
}
}
void SortSimplex(std::vector<Apex*>& simplex)
{
// Sorts apexes of simplex in an ascending order
// the 1st has the smallest function value, while the last has the largest.
// std::cout << "Before sort\t" << std::endl;
// printSimplex(simplex);
long size = (long)simplex.size();
for (long i = 0; i < size; ++i) // for each apex upto the 2nd last
{
for (long j = i + 1; j < size; ++j)
{
if (simplex[i]->f > simplex[j]->f) // swap apex i with j
{
// std::swap(simplex[i],simplex[j]);
Apex* tmp = simplex[i];
simplex[i] = simplex[j];
simplex[j] = tmp;
}
}
}
// std::cout << "After sort\t" << std::endl;
// printSimplex(simplex);
}
double Max(double a, double b)
{
if (a > b) return a; else return b;
}
double MaxVec(std::vector<double>& vec)
{
double maxval = 0;
int size = (int)vec.size();
for (int i = 0; i < size; ++i)
maxval = Max(maxval, abs(vec[i]));
return maxval;
}
long Factorial(long n)
{
if (n <= 1) // Factorial = 1: Exit Function
return 1;
return n * Factorial(n - 1);
}
};